Mathematics Chalmers & GU
TMA372/MMGS800: Partial Differential Equations, 2011-06—04; kl 8.30-13.30.

Telephone: Peter Helgesson: 0703-088304

Calculators, formula notes and other subject related material are not allowed.
Each problem gives max 5p. Valid bonus poits will be added to the scores.
Breakings: 3: 15-20p, 4: 21-27p och 5: 28p-  For GU studentsG:15-27p, VG: 28p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/1011/index.html

1. Let 71 f be the linear interpolant of a twice continuously differentiable function f on the interval
(a,b). Prove that

1 =T fl Loty < (0= )" || 1o (at)-
2. Prove an a priori and an a posteriori error estimate for the ¢G(1) finite element method for

—u"(z)+d ()= f, O0<ax<I; u(0) = u(1) = 0.

3. Derive the ¢cG(1)-cG(1), Crank-Nicolson approximation, for the initial boundary value problem
u—u’=f, 0<x<1, t>0, (1)

u'(0,t) =u/(1,t) =0, wu(zx,0)=0, xze€]l0,1], t>0,
4. Show that the ¢G(1)-cG(1) solution for wave equation in 1d satisfies the conservation of energy:
TN+ 1Tl = 1U5 1| + 1Tn-a (2)
5. Let Q be the domain in the figure below, with the given triangulation and nodes N;, i =1,...,5.

Let U be the c¢G(1) solution to the problem

—Au=1, in Qc R? with —n-Vu=0, on 9Q. (3)
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a) Given the test function o at node N, find the relation between Uy, Us, Us, Uy, and Us.
b) Derive the corresponding relation when the equation is replaced by —Awu + (1,0) - Vu = 1.

6. (a) p and q are positive constants. Verify in details that the coefficient matrix for the ¢G(1)

method for
{ —u(z) + pu(x) = f(x), x € (0,1),
u'(0) = /(1) = g,
is symmetric, positive definite and tridiagonal.
(b) For which values for the parameter p is the coefficient matrix diagonal?
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Losningar/Solutions.

1. See Lecture Notes.

2. We multiply the differential equation by a test function v € Hg(I), I = (0,1) and integrate
over I. Using partial integration and the boundary conditions we get the following variational

problem: Find u € H}(I) such that
/l(u'v' +u'v) = /va, Vv € Hy(I).
A Finite Element Method with c¢G(1) reads as follows: Find U € V! such that
/I(U’v’ +U"v) = /va, Yo e VP ¢ Hy(I),

where

V¥ = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = u — U, then (1)-(2) gives that

/(e’v’ +e'v) =0, VYvelp.
I

We note that using e(0) = e(1) = 0, we get

S N A N
/,ee_/,zd:c(e)_2(e)|0_0'

Further, using Poincare inequality we have
lell* < fle'lI*.

A priori error estimate: We use Poincare inequality and (7) to get

llel|: :/I(e'e'—i—ee)§2/Ie'e’:2/(e'e'+e'e):2/(e'(u—U)'—i—e'(u—U))

1 1

:2/I(el(u—7rhu)'+e’(u—7rhu)) +2/I(e’(whu—U)’—i—e’(whu—U))

={v=U—mpu in (6)} = 2/ (e'(u —mpu) + €' (u— whu))
I
< 2)|(u = mnw) |llle']] + 2flu — mrull €]
< 2C{||h"[| + [1h*0" || Hlell 71,
this gives that
lellm < Cofllpa”|l + [|h2u" |1},

which is the a priori error estimate.

(4)



A posteriori error estimate:

el = [(ee vy <z [ee =2 (et

= 2/1((u— U)Ye+(u—-U)e)={v=e in (4)}
_2/fe—/(U’e’—|—U’ )={v=mue in (5)} (8)

/f e — mpe) / (U/(e—ﬂ'he)/—i-U’(e—ﬂ'he))
= {P.I. on each subinterval} = /R(U)(e — mhe),
I

where R(U) := f+U" —U' = f — U’, (for approximation with piecewise linears, U = 0, on each
subinterval). Thus (5) implies that

lellzn < IAR@)IIIA™ (e = mne)|
< GIRRU)IEN < CillRW) el 7
where C; is an interpolation constant, and hence we have with || - || = || - ||z, () that

el < Gil[PR(U)]-

3. Make the cG(1)-cG(1) ansatz

Uz, t) = Up_1(2)n_1(t) + Up(2)hn (t),  with  Up( Z Up.j;(x

in the variational formulation

1 1
/ / u'v = / / v, I, = (tn—1,tn).
I, JO I, J0

Recall that v = ¢;(z), j=1,...,M and

Yn1(t) = bt bn(t) = totn1

For a uniform tile partition with k :=¢,, — ¢,,—1, this yields the equation system

tn_tn—l, tn_tn—l'

k

Here U, is the node-vale vector with entries Uy, j, M is the mass-matrix with elements fol wi(x)p;i(z),
S is the stiffness-matrix with elements fol @i(w)¢(x), and by, is the load vector with elements

i fol fwi(z). The corresponding dG0 (=~ implicit Euler) time-stepping yields
(M +kS)U,, = MUy, —1 + kb,

4. Following the lecture notes, we may write the wave equation

i—u" =0, 0<x<l, t >0,
u(0,t) =0, uw'(0,t) = g(¢t),t >0,
u(z,0) = uo(z), u(z,0) =vo(z), O<z<l,
in a system viz,
U=, t>0,
{ 0 =u" t>0,

for which the ¢G(1) method yields the matrix system

MU, — MV, = MUp_1 + EMV,, 4
%SUn + MV, = _%SUn—l + MV, 1 + Gn,
2



with M and S being the mass and stiffness matrices, respectively. Let ¢g(t) = 0, and multiply the
first equation by (U, + U,_1)!SM~! and the second equation by (V;, + V,,_1)*. Adding up and
using the identities as W SW,, = [|[W/||?, and P'AQ = QT AP, for A = S, M yields the desired
result.

5. a) With U expressed in terms of the basis functions ¢;, j = 1,2,3,4,5 and with the test
function v = @9 in the variational formulation we obtain the relation

1 1 1
——U, 42Uy — Us — =Uy = =h?.
5 1+ 203 375 4 D)

b) If we change the equation to —Awu + (1,0) - Vu = 1 the relation between the nodal values

1 >

h
2 3eh
1 I

becomes: ) ) h L h h )
—= 2Uy —Us — =Uy — = =Us — = —Us = —h?.
2U1—|— Uy, — Us 2U4 3U2+3U3 6U4+6U5 3
Finally if, for instance, for —V - aVu = f with a = 1 for < 0 and a = 2 for x5 > 0, the

corresponding relation is:
1 3 1
—=Uy +3U; — =Us — Uy = =h%.
51 + 38Uz 53 155

You may work out the details in such a model!

6. Let V and V}, be the spaces of continuous and discrete solutions, respectively. The variational
formulation is: Find u € V' such that

_/Ol(u”(x) u(z) d:c_/f v)dz, VeV

Integrating by parts and using the fact that «/(0) = = q we get

—/ u'v' dx—i—p/ uvd:v/ f(@)v(x)dr + q(v(1) — v(0)), Vv e V.
The corresponding ¢G(1) method reads: Find U € V}, such that

1 1 1
—/ U'v' dx +p/ Uvdr = / f(z)v(x)dz + q(v(1) — v(0)), Yv € V.
0 0 0
IfU = Z]]Vil &jp;i(x), then we get the following system of equations:
1 M 1 M 1
| Seeivider [ Sgeiide= [ faroidn+ oo o). i=1,. 0
j=1 j=1

Or equivalently

M 1 1
;fj/o (80;-%0/1- +p<ﬂj%—> dx :/O f(@)gi dz + q(gi(1) — i(0)), i=1,... M.
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That is we have the system A = b with
1 ~ 1 ~ 1
{ aij = [, (‘PQ% +Wj%') dz = ai; +p [y ¢jeide, aij = [y Py da
b = [y f(@)eidz + a(pi(1) — 9i(0)).

The stiffness matrix is obviously symmetric, since a;; = aj;. To see if A is positive definite, we
form for any vector v € RM

M M M M 1
vl Ay = Zvi(Za”vj) = Zv Zvj/ ((p}(pé +p§0j(/7i) d:c}

i=1 =1 i=1  j=1 0
1 M ’ M

/0 > v [Zvj (@}s@é +p90j90i) dw}
=1 j=1
1 M M 1 M M

/0 ZUZ(ZW@;%) dﬂc—i—/o Zvi(ZUjpgojgoi) dx 9)
i=1 =1 i=1 =1
1 M J M M

:/0 va(zvm d:c+p/ sz% va)

i=1 j=1 Jj=1

1 N2 1, M 2
_/0 (Zviwi) dz—i—p/o (gvz%) dx.

=1
Thus v'Av > 0 and v Av = 0 <= v = 0, since p > 0. Hence A is positive definite.
To see if A is tridiagonal we compute the elements a;;:
ai; =0, if |i—j|>1 (10)

Since the support for the basis functions overlap only for adjacent nodes.

1 1 i T — X;-1 2 Fit1 T — Tj41 2

IR S (7) d + / (7) d 11
e e C / s Pl \hea (1D
1 1 P

= 7 5 hi hz
P + T + 3( + hit1)

1
Giit1 = Qijp1 +P | Pipit1dx
0

it+1 — . .
+p/ s S — dzr
p

1 _hz h”L
o o o v (12)
I )&= %‘yrm + 75 /%H (z —zi)?
=— — T—Tip1)———— 2
hm h2, * 2 o T RZ, 2
L p
=— =Nt
Tt + g+t
Obviously (10)-(12) means that A is tridiagonal.
Since we may choose p = , it is possible that a; ;41 = 0. A may even be diagonal (for a uniform
hiia

triangulation). In general, though, A is tridiagonal.
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