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Mathematics Chaimers & GU
TMA3872/MMGS800: Partial Differential Equations, 201.0-08-25; kl 8.30-13.30.

Telephone: 1da Safstrém: 0703-088304

Calculators, formula notes and other subject related material are not allowed.

Each problem gives max 7p. Valid bonus poits will be added to the scores.
Breakings: 3: 20-29p, 4: 30-39p och 5: 40p- For GU G students :20-35p, VG: 36p-
For solutions and gradings information see the couse diary in:
http://www.math.chalmers.se/Math/Grundutb/CTH/tma372/0910/index. html

1. Derive the c¢G(1)-¢G(1), Crank-Nicolson approximation, for the initial boundary value problem
(1) o —u" = f, O<z<l, t>0

w(0,8) =4/ (1,5} =0, w(z,00=0, =z€[0]1], £>0,
2. Show that the ¢G{1)-¢G(1) solution for wave equation in 14 satisfies the conservation of energy:
) 1N+ 10l = U]l + [Tl

3. Consider the Poisson equation with Neumann boundary condition

(3) —Au=f, in (QeR? with —n-Vu=ku, on 89,
where k > 0 and n is the outward unit normal to 8§ (8Q is the boundary of €2).
a) Prove the Poincare inequality:  |uf Lp(@) S Calllu| Lafa) + (V]| Loeny)-

b) Use the inequality in a) and show that Ju|lp, (50 — 0 as k& — co.

4. Let © be the domain in the figure below, with the given triangulation and nodes N¥;, i = 1,...,5.
Let U be the cG(1) solution to the problem (3), with f =1 and k= 0.
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a} Given the test function oo at node Ny, find the relation between Uy, Uy, Us, Uy, and Us.
b) Derive the corresponding relation when the equation is replaced by —Au + (1,0) - Vu = 1.

5. a) Formulate a relevant minimization problem for the solution of the Poisson equation
—Au=f, in Qe€R?  with n-Vu=0b(g—u), on 99,

where f > 0, b > 0 and g are given functions.
b) Derive an a priori error estimate for cG(1) approximation in the corresponding energy-norm.

6. Formulate and prove the Lax-Milgram theorem.
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TMA372/MMGS800: Partial Differential Equations, 2010-08-25; ki 8.30-13.30..
Lasningar /Solutions.

1. Make the ¢G{1)-cG(1) ansatz

M
U(@,t) = Un-1()bn-1 () + Un(@n(t),  with Un(z) =Y Unsips(a),

=1

in the variational formulation

1 1
/ f u'v' =/ / fu, I = (ta—1,ta)-
In /0 I, Jo

Recall that v = ¢;{z), 1=1,..., M and

t, —t

t—tp1
by — tn—l '

tn - tn—l '

Pp—1 (t) = VPn (t) =

For a uniform tile partition with k := ¢, — t,—1, this yields the equation system

(M + gS)Un - (M- gS)Unml + kb,

Here Uy, is the node-vale vector with entries U, ;, M is the mass-matrix with elements fol wilz)p; (),
S is the stiffness-matrix with elements fgl wi(z)(z), and by, is the load vector with elements
]/ I fol foi(z). The corresponding dGO (= implicit Euler) time-stepping yields

(M + kS)Up = MU, 1 + kb,

2. Following the lecture notes, we may write the wave equation

th—u’ =10, O<e<l, t >0,
u(0,t) =0, w'(0,8) = g(t},t > 0,
u(,0) = uo(z), a(z,0) = vo(z), 0<z <1,
in a system viz,
=", t >0,
o =u" t >0,

for which the ¢G(1) method yields the matrix system

MU, — 8MV, = MU,_1 + EMV, 4
KSUw+ MV, = —£8U, 1+ MV,o1 + g,

with M and S being the mass and stiffness matrices, respectively. Let g(t) = 0, and multiply the
first equation by (U, 4+ Un_1)*SM =" and the second equation by (V;, + Vo—1)*, Adding up and
using the identities as WESW, = [[W.|2, and P*AQ = QT AP, for A = S, M yields the desired
result.
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3. a) There is smooth function ¢ such that A¢ == 1 so that, using Greens formula

iy = [ a9 = [ ?op- [ 2uvu-vs
N o0 1
1 1
< Cillul3o + Callull{Vul < Crlfullda + 5 lls + 5 GVl

This vields
lly, < 2C1|lulidq + CRIVulE < C*(lullda + I Vel),
where C? = max(2C], C2), C1 = maxsq |0,¢}, and Cy = maxq(2|V¢i).

b) Multiply the equation —Au = f by u and integrate over ). Partial integration together with
the boundary data —8,u = ku and Cauchy’s inequality, yields

IVl + bl = [ Vu Vs [ w-om) = [ w-suy= [ su
Q file3 11 Q
< Juflbflle < Colllullon + [Valla)lflla = llullaaCallfla + I VulaCall fla
1 1
< Slulo + SIVeld + GBI
Subtracting 3||ull3q + 3|Vl from the both sides, we end up with
1 1 1
(k= lullza < S1Vullf + (k- 3)lulze < CaI Al

which gives that ||ulleq — 0 as k& — oo.

4. a) With U expressed in terms of the basis functions ¢;, j = 1,2,3,4,5 and with the test
function v = @y in the variational formulation we obtain the relation

—§U1+2U2—U3— §U4-— “2"h~ .

b) If we change the equation to —Au + (1,0) - Vi = 1 the relation between the nodal values

4® 2
h
2(H 8
13
becomes:
I 1 h h h h 1
—= Uy —-Uy— = =3 —— —U; = —h2

2U1+2U2 q 3 1 3U2—§-3U3 6U4+6U5 2h

Finally if, for instance, for —V -aVu = f with a = 1 for « < 0 and a = 2 for x5 > 0, the
corresponding relation is:
1 3 1
—ZU;s + 38Uz — =Us — Uy = Zh?,
sU1+3U2 = 5Us = Uy 2h
You may work out the details in such a model!
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5. a) Multiply the equation by v, integrate over {2, partial integrate, and use the boundary data
to obtain

Lf”=—£z(ﬁu)v=—/F(n-Vu)v+/gVu-Vv=/Pbuvw-/;bgv—}-/;zVqu,

where ' ;= 90. This can be rewritten as

/Vu-Vv+/buv=/fv+/bgv.
Ja r o, Ja r

:=aE:L,u) ::EE‘U)

F(w):%=a(w,w)—l(w)=%~/9Vw-Vw+./Fbww—/§;fv+-/Fbgv,

and choose w = u+ v, then
F(w) = Flu+v) = Fu)+

/Vu Vw+/bu'u——ffv+fbgv+ [VU Vo + = fbm;>F

This gives F(u) < F(w) for arbitrary w.

b) Make the discrete ansatz U = E, _1 Uiy, and set v = ¢4, ¢ = 1,2,..., M in the variational
formulation. Then we get the equation system AU = B, where U is the column vector with entries
U;, B is the load vector with elements

By =/ fips -3-[ bgep;,
0 r
and A is the matrix with elements

Agj = f Vi - Vs + / bpisp;.
0 T

Here @; = ¢;(z) is the basis function (hat-functions) for the set of all piecewise linear polynomials
functions on a triangulation of the domain £2.
Finally for the energy-norm |v]| = a(v,v)'/2, using the definition for U = U(z}, and the Galerkin
orthogonality, we estimate the errore=u — U as

”6"2 = afe,e) = ale,u — U) = afe,u) —ale,U) = a(e, u)

= afe,u) — afe,v) = ale,u — v) < fleffu—]|.

Let now

This gives |Ju — U|| = |le]l < |u— »]|, for arbitrary piecewise linear function v, due to the fact that
for such U and v Galerkin orthogonality gives a(e, U} = 0 and a(e,v) = 0: Just notice that both
U/ and v are the linear combination of the basis functions ¢; for which according to the definition

of U we have that .
ale, ;) = alu, 7) — a(U, ;) = Up;) — Up;) =0
In particular, we may chose the piecewise linear function v to be the interpolant « and hence get

flu = U < fju— vl < CllhD?,

where h is the mesh size and C is an interpolation constant independent of h and w.

6. See Lecture Notes or text book chapter 21.
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