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1. Prove the following error estimates for the linear interpolation error v — myv for the function v
on the interval J = (0, h):

(@) max|o(z) —mo(@)| < CiA” max|v"(z)], () max|v'(@) — (mv)'(z)] < Cohmax|v"(2)],

where mv(z) = az + b, mv(0) = v(0), mu(h) = v(h), v' = dv/dz. (c) Show that C; < 1/8 and

Cy <1/2.

2. Formulate the ¢G(1) Galerkin finite element method for the boundary value problem
—Autu=f, z€ u=0, z€aN,

on the domain Q. Write the matrices for the resulting equation system using the partition below
(see fig.) with the nodes at N1, Na, N3 and N and a uniform mesh size h.

Hint: You may first compute the matrices for the reference triangle-element T'.

N3 Ny
Q T2
Ny Ns 3
h
1 h 2 o

3. Prove (a) an a priori and (b) an a posteriori error estimate for a finite element method for the
boundary value problem, (the required interpolation estimates can be used without proofs):

—Ugg + Uy = fa T e (Oa 1); U(O) = u(l) =0.

4. Consider the boundary value problem
u+a(z)uy —eug, = f, z€(0,1); u(0) = uz(1) =0,

where ¢ is a positive constant and a(z) is a function of z such that a > 0 and a,(z) > 0. Prove
the following stability estimate for the solution wu:

IVeus|| + [ VEasua|| + lleus|| < ClIfI,

where || - || denotes the Ly(I)-norm, with I = (0,1) and C'is a constant.
5. Consider the following problem for the Klein-Gordon equation of quantum field theory:

i — Au+u =0, ze t>0,
u =0, €N t>0,
u(w,O) = Uo(-'E), ’LL(CL',O) = ul(x)a T € Q.

(a) Define a suitable energy for this problem and show that the energy is conserved.

(b) Rewrite the equation as a system of two equations with time derivatives of order at most one,
both in scalar and matrix form. Why is this reformulation needed?
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TMA372/MANG660: Partial Differential Equations, 2008-03-10. Losningar.

1. See the Book and Lecture notes.

2. Let V be the linear function space defined by
V:={v:v is continuous in 2, v =0, on 90}.
Multiplying the differential equation by v € V' and integrating over Q2 we get that
—(Au,v) + (u,v) = (f,v), Yv e V.
Now using Green’s formula we have that
—(Au, Vo) = (Vu, Vo) — /89(n -Vu)vds = (Vu, V), Yv e V.
Thus, since v = 0 on 012, the variational formulation is:
(Vu, Vo) + (u,v) = (f,v), Yv e V.
Let now V}, be the usual finite element space consisting of continuous piecewise linear functions,
on the given partition (triangulation), satisfying the boundary condition v = 0 on 9Q:
Vi := {v : v is continuous piecewise linear in 2, v =0, on dN}.
The ¢G(1) method is: Find U € V}, such that
(VU,Vv) + (U,v) = (f,v) Yv € V,

Making the “Ansatz” U(z) = Ej.:l &ipj(x), where ¢; are the standard basis functions, we obtain
the system of equations

4
Z@(/Vsoi-wjdﬂ/«piwdx) =/fsoz-dw, i=1,2,3,4
Q Q Q

j=1
or, in matrix form,
(S+M)¢=F,
where S;; = (V;, V;) is the stiffness matrix, M;; = (5, ¢;) is the mass matrix, and F; = (f, ¢;)
is the load vector.

We first compute the mass and stiffness matrix for the reference triangle T'. The local basis
functions are

¢1(x1’$2):1_$_h1_%a V‘ﬁl(ml,ﬂ)g):—%[ i :|’
¢2(5U1;.'L'2) = %7 V¢2(.’L’1,£If2) = % [ (1] :| ,
$3(z1,22) = %’ Vz(z1,22) = % [ (1) ] .

Hence, with |T| = [.dz = h?/2,
1 1—22 . h2
mi = (@00 = [ @ao=1 [ [ (11 - 2a)? dordes = .
T 0 0 ]‘2

2
1= (Vou, Vo) = [ Vi da = 7| = 1.
T
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Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision
3):

2
- 2 g = 1L ( h-r
mi1 = (¢1,¢1) /¢ Z¢ 0+4+4 12
where £; are the midpoints of the edges. Slmllarly we can compute the other elements and obtain
s | 2 1 1 2 -1 -1
1
m = 2—4 1 2 17, $=5 -1 1 0
1 1 2 -1 0 1
We can now assemble the global matrices M and S from the local ones m and s:
1
M1 = My = 2myq + 4mae = —h2 S11 = Saa = 2511 + 4520 = 4,
Mz = M33 = 3ma1 + 2mas = Ehz Sag = S33 = 3s11 + 2822 = 4,
1
My = Miz = May = M3q = 2my2 = ﬁh2’ S12 = S13 = Sa4 = S34 = 2519 = —1,
1
Moz = 2ma3 = ﬁhz, S23 = 2893 =0,
M14 = 0, 514 = 0,
The remaining matrix elements are obtained by symmetry M;; = Mj;, Si; = Sj;. Hence,
6 1 1 0 4 -1 -1 0
h? -1 4 0 -1

1 5 1
M‘Ells S=1 0 0 4 -1
01 1

0 -1 -1 4

D = =

3. We multiply the differential equation by a test function v € H} = {v : |[v|| +]|]v'|| < o0, v(0) =
v(1) = 0} and integrate over I. Using partial integration and the boundary conditions we get the
following variational problem: Find u € H}(I) such that

(1) /(u'v' +u'v) = /fv, Yv € Hy(I).
I I
Or equivalently, find u € H (I) such that
(

(2) Uz, Vg) + (Ug,v) = (f, v), Yvé€ H&(I)
with (-,-) denoting the Ly(I) scalar product: ( = [u z)dz. A Finite Element Method
with ¢G(1) reads as follows: Find uj € V} such that
(3) /(u;lv' + upv) = /fv, Yo e VP c HY(I),
I I
where

V? = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.
Or equivalently, find u, € V0 such that
(4) (up z,02) + (Unz,v) = (f,v), Yve VL.
Let now

a(u,v) = (ug,vz) + (ug,v).

We want to show that a(-,-) is both elliptic and continuous:
ellipticity
(5) a(u,u) = (ug,uz) + (ug,u) = ||u$||25
where we have used the boundary data, viz,

/Oluwudm: [%2](1) =0.
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continuity

(6) a(u,v) = (Uz, V) + (uz,0) < ||ue||[Jve]] + [[uelll[0]] < 2Jue||[[v]],
where we used the Poincare inequality ||v]| < ||vz]|.

Let now e = u — uy, then (2)- (4) gives that

(1) alu—un,v) = (uy — Upz,Vz) + (Ug — Upz,v) =0, Yo € VY, (Galerkin Orthogonality).

A priori error estimate: We use ellipticity (5), Galerkin orthogonality (7), and the continuity (6)
to get

[y — uh’mH2 =a(u — up,u —up) = a(u — up, v —v) < 2l|uy — upg|l|luz —vell, Vv € V,?.
This gives that
(8) ||uz - uh,w“ < 2||uw - Uz“a Vv € Vi?;

If we choose v = mpu € V)2, the interpolant of u, and use the interpolation estimate we get from
(8) that

(9) ”uw - uh,w“ < 2”“90 - (WU)zH < 2Cz||humw||

A posteriori error estimate: We use again ellipticity (5), Galerkin orthogonality (7), and the vari-
ational formulation (1) to get

llez||? = a(e,e) = ale,e — we) = a(u,e — 7€) — a(up, e — me)
(10) = (f:e - 7Te) - a(uhae - 71'6) = (f7e - 7T€) - (uh,zaew - (We)z) - (uh,zae - 71'6)
= (f — Up,z,€ — 77-6) < C”h(f - uh,z)””ezna

where in the last equality we use the fact that e(x;) = (we)(z;), for j:s being the node points, also
Up,zz = 0 on each I; := (zj_1,2;). Thus

(Uh,z, €z — (m€)g) = — Z/ Uh,pz(e — me) + Z (uh,z(e - 7re))
= JI. -
i U ]
Hence, (10) yields:
(11) llez|| < CllA(f — una)ll-
4. Multiply the equation by —eu,, and integrate over I = (0,1):

1 1 1 1
(12) / —EUU gy +/ —ea(T)UpUyy + / EQuiw = —/ efugy.
0 0 0 0

We calculate the first two integral on the left hand side of (12)as:

1 1 1 1
(13) / —EUUgy = — [Euux] +/ gul = / eul.
0 0 Jo 0

2
Uz

1 1 1 1 1
(14) /0 —ea(T)uzlipy = [— 6a(m)7] + 5/0 cazu’ = ea(0) o+ 5/0 cazu’.
Inserting (13) and (14) in (13) yields

1 2 1 1
uz (0 1
/ eu2 + ea(0) ””2( ) + 5/ anu§+/ g2u?,
0 0 0

=0.
I;

(15) )
2 1 2
= —/0 efuae < Iflllleuasll < IIFI° + 7 lleuasl”.
Thus
1 3 .
(16) Ve + 5 lVETse | + 2 lleuael < £,
Hence

17) IVeus|l + [vVeasuall + lleuszll < CIIfIl-
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5. a) Multiply the equation by u and integrate to obtain
(1-1:, u) - (Aua u) + (ua u) =0,
(4, 4) + (Vu, Vi) + (u,a) =0,
1d, .
5 (all* + [Vul* + [[«|*) = 0,

%(Ilu(t)lﬁ +[Vu®)]® + [lu(®)]?) = %(Ilulll2 +1[Vuo|[* + [luol*).

This means that the energy E = $(||4(t)|[> + ||[Vu(®)||* + ||u(t)||?) is conserved.
b) Set v1 = u, va = u. Then
U1 — Avg +v9 =0,
1.}2 — V1 = 0.
Now we have a system © + Av = 0 of first order in ¢ and we can use various techniques developed

for such systems, for example, we can apply standard time-discretization methods such as dG(0)
or ¢cG(1).
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