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TMA372/MANG660 Partial Differential Equations TM

OBS! Skriv namn och personnummer pa samtliga inlimnade papper.

1. Let a and 3 be positive constants. Give the piecewise linear finite element
approximation procedure, on the uniform mesh, for the problem

—u"(z) =1, 0<z<l; u(0) =a, u'(1)=7.

2. Formulate the ¢G(1) method for the boundary value problem
—Au+u=f xel u=0, x¢€d.

Write down the matrix form of the resulting equation system using the
following uniform mesh:

3. Consider the boundary value problem for the stationary heat flow in 1D:
(BVP) — (a(x)u'(x)) = f(x), 0<z<I; u(0) = u(1) = 0.
Formulate the corresponding variational formulation (V' F'), minimization

problem (M P) and show that: (BVP) <= (VF) < (MP).

4. (a) Prove an a priori and an a posteriori error estimate for the finite
element method for the problem

—u"(z) +u'(z) = f(z), O0<z<1,; u(0) = u(1) = 0.

(b) Give an adaptive algorithm based on a posteriori estimates.

5. Let Q be a bounded domain in R?. Consider the initial-boundary value
problem

uy — Au = 0, in QxR
u =20, on 0N x RT,
u(-,0) = v, in Q.

Show the stability estimates

1 t 1
(i) NIVu@IP < llol®, and (i) / sl|Au(s)[*ds < ol
/ J0
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1. Let a and 8 be positive constants. Give the piecewise linear finite element
approximation procedure, on the uniform mesh, for the problem

-u'(z)=1, 0<z<1; u(0) =a, u'(1)=4.

Solution: Multiply the pde by a test function v with v(0) = 0, integrate over
x € (0,1) and use partial integration to get

1 1
— '] + / u'v' de = / vdz =
0 0

(1) —u'(1)w(1) + u'(0)v(0) + '/0 u'v' dr = ’/0 vdr <<

1 1
— Bu(1) —|—/ u'v'dz = / vdz.
0 0

The continuous variational formulation is now formulated as follows: Find

(VF) veV:={w: /01 (w(az)2 + w'(az)Q) dx < 0o, w(0) = a},

such that
/1 w'v' dr = /1 vdr + Bu(1), VYo e VO,
where ' '
V0= {v: /1 (1}(.?7)2 + 1}'(.7:)2) dr < oo, w(0) =0}.
For the discrete version we loet Tr be a uniform partition: 0 =z < 21 < ... < Tpr41
of [0,1] into the subintervals I,, = [z,,—1,2,], n = 1,... M + 1. Here, we have M

interior nodes: 1, ...xar, two boundary points: xp = 0 and xpr41 = 1 and hence
M + 1 intervals.

The finite element method (discrete variational formulation) is now formulated as
follows: Find

(FEM) U € Vj, := {wy, : wy, is piecewise linear, continuous on Ty, wy(0) = a},
such that
1 1
(2) / U'vy, dz = / vp dx + Bop(1), Yo € V2,
Jo Jo
where

V) := {vp, : vy, is piecewise linear, continuous on 7y, v4(0) = 0}.

Using the basis functions ¢;, j = 0,...M + 1, where ¢;,...¢p are the usual
hat-functions whereas g and @41 are semi-hat-functions viz;

0, z ¢ [zj1,2;]
(3) pi(a)=¢ ==+ =zj 1 <z<wz , j=1,...M.
Tiy1—x

Tj <2< Tjn
1



and

wo(r) =

{“hm 0<z<m
0, 0<x<zpnp.

Ty < x < Ty
0. <z<1’ <PM+1(-T)={ h

In this way we may write

Vi = apo ® [@1,- -, pm+i1], V,?Z[(pl,...,(pM+1].

Thus every U € V}, can ve written as U = awpqg + v, where vy, € V,?, ie.,

M+1
U=apo+&y +.. . Evpr1pmer = apo + Z Sipi = apo + U,

i=1

where U € VY, and hence the problem (2) can equivalently be formulated as to find

&1, ... &n4 such that

M+1

1 1
/ (a(pg—l— mei»)(p"idx:/ pjdr+ Bp;(1), j=1,...M+1,
0 = 0

which can be written as
M4+1

1 1 1
Z (/ cp}(p;da:)fi:—/ npﬁnp}da:%—/ pjde+ Bp;(1), j=1,...M+1,
— Vo 0 0

or equivalently A = b where A = (a;;) is the tridiagonal matrix with entries

ai; = 2, Qi1 = Qip1,; = —1, i=1,...M, and an+1,mM41 = 1,
ie., )
2 -1 0 0 0 O
-1 2 -1 0 0 O
1
A=—
h
o 0 ... 0 -1 2 -1
| 0 0 ... 0 0 -1 1|
and the unkown ¢ and the data b are given by
I 1 -
& f(]] p1dr — 04,[0 o dx h+ %a
52 ,/‘0 Y2 dz h
¢=1 b=| = |
Emr [ ou da Z
Err41 | fol omr1dr + Borrii(l) st 8




2. Formulate the ¢G(1) method for the boundary value problem
—Au+u=f, ze u=0, ze€on.

Write down the matrix form of the resulting equation system using the following
uniform mesh:

Solution: Let V}, be the usual finite element space cosisting of continuous piecewise
linear functions satisfying the boundary condition v = 0 on 9. The ¢G(1) method
is: Find U € V}, such that

(VU,Vov) + (U,v) = (f,v) Yv € V

Making the “Ansatz” U(z) = Z?:] &iwi(x), where p; are the standard basis func-
tions, we obtain the system of equations

4
Zfi(/V‘Pi-V‘P.idﬂZ-f-/(pi(pjdw) :/fcpjda:7 j=1,...,4,
i=1 Q Q Q

or, in matrix form,
(S+ M) =F,
where S;; = (Vyi, V;) is the stiffness matrix, M;; = (¢;, ;) is the mass matrix,
and F; = (f,¢;) is the load vector.
We first compute the mass and stiffness amtrix for the reference triangle 7'. The
local basis functions are

bl =1- 32 Ve =] ],
¢2(21,22) = 3;7_] Vo (z1,22) :% { é } ,
¢3(w1,29) = % Vs (21, 22) :% { (1) } -

Hence, with |T| = [.dz = h?/2,

) 1 1—z9 h2
miq :(¢]7¢]):/¢%dﬂf:hz/ / (1—$]—$2)2d$]d$2:—,
T 0 0 12

2
1 = (V61,00) = [ V1 ds = /7] = 1.
T )
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Alternatively, we can use the midpoint rule, which is exact for polynomials of degree
2 (precision 3):

_ I S AN AU NS N &
m11(¢17¢1)/T¢1d$?;¢1(33]) 7F(O+Z+Z)fﬁ’

where z; are the midpoins of the edges. Similarly we can compute the other ele-
ments and obtain

2 11 2 -1 -1
h? 1
m= g 12 17, $=3 -1 1 0
1 1 2 -1 0 1
We can now assemble the global matrices M and S from the local ones m and s:
8
My1 = Mys = 8mgs = ﬁhQ’ S11 = Saa = 8899 = 4,
1 .
My = Mz = Moy = Mzs = 2may = ﬁhz, S12 = S13 = S2a = S34 = 2812 = —1,
1
My =2mo3 = ﬁhQ’ S14 = 2893 =0,
4
My = M3z = 4may = ﬁh2’ Sy = S33 = 4ds11 =4,
M23 = O; 523 =0.

The remaining matrix elements are obtained by symmetry M;; = Mj;, S;; = Sji.
Hence,

8 1 1 1 4 -1 -1 0
B2l 1 4 0 1 -1 4 0 -1

M‘E1041 S=1_41 o 4 -1
111 8

0 -1 -1 4

3. Consider the boundary value problem for the stationary heat flow in 1D:

(BVP) — (a(z)u'(z)) = f(z), 0<z<I; u(0) = u(l) =0.
Formulate the corresponding variational formulation (V F'), minimization problem
(M P) and show that: (BVP) < (VF) < (MP).

Solution: See PDE Lecture Notes, Chapter 8.
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4. (a) Prove an a priori and an a posteriori error estimate for the finite element
method for the problem

—u'(z) +u'(z) = f(z), 0<z<1; u(0) = u(1) = 0.
(b) Give an adaptive algorithm based on a posteriori estimates.

Solution: (a) We multiply the differential equation by a test function v € Hj(I), T =
(0,1) and integrate over I. Using partial integration and the boundary conditions
we get the following variational problem: Find u € H{(I) such that

(4) /I(u'v' +u'v) = /va, Vv € Hy(I).

A Finite Element Method with ¢G(1) reads as followa: Find U € V;? such that

(5) /(U'v' +U'v) = /fv, Yo e Vi C Hy(I),
Ji Ji
where
V) = {v : v is piecewise linear and continuous in a partition of I, v(0) = v(1) = 0}.

Now let e = u — U, then (1)-(2) gives that
(6) /(e'v' +e'v) =0, YveV
I

We note that using e(0) = e(1) = 0, we get

(7 '/’e'e = /I %%(62) = %(ez)h]] = 0.

Further, usig Poicare inequality we have
llell* < le']f?.

A priori error estimate: We use Poicare inequality and (7) to get

el = /,(e'e' +ee) < 2/]6’6’ = 2/](6’6’ +e'e) = 2/, (e'(u -U) +eé'(u— U))
= 2/[ (e'(u —mpu) +e'(u— nhu)) + 2/[ (e'(nhu —U) +¢€'(mpu — U))
={v=U —muu in (6)} = 2/, (e'(u —mpu) + €' (u— whu))

< 2| (w = mpu)'ll€'ll + 2[lu — mpull|l€']
< 20 {|[ha"|| + [1h*u" [ Hlell

this gives that
lellme < Ci{[|hu|] + [|*u”|1},

which is the a priori error estimate.
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A posteriori error estimate:

llel|3 = /I(e'e' +ee) <2 /Ie’e’ =2 /I(e’e' +¢€'e)

=2 /((u —U)e'+(u—-U)e)={v=e in (4)}
J1
(8) —Q/fef/(U'e'-l—U’ ) = {v =mpe in (5)}
/f e — mhe) /(U’(e‘*ﬂ'he)l-l-Ul(677Th€))
= {P.I. on each subinterval} = /R(U)(e — mhe),
Jr

where R(U) := f+U" —U'" = f — U', (for approximation with picewise linears,
U = 0, on each subinterval). Thus (5) implies that

lellz < IRR@)INIR (e — mne)

< GillhRW)IE'N < CillhRU) el a1,

where Cj is an interpolation constant, and hence we have with || - || = |- ||z, (r) that

lellz < CillPR(U)|-

(b) An adaptive procedure can be formulated in the following steps:

Step I. Start with a given mesh size h and a given error tolerance “TOL”. Compute
U and R(U) corresponding to this h

Step II. Compare C;||hR(U)|| with the tolerance “TOL”:

Ila). If
CillhR(U)|| < TOL,

then accept U as an appropriate cG(1) approximate solution.

TIh). If

CillhR(U)[| = TOL,
then refine the mish on the subintervals with large R(U) contributions, thus obain
a new mesh and return to Step I.

5. Let Q be a bounded domain in R?. Consider the initial-boundary value problem

- Au =0, in Q xR,
u =0, on 00 x R,
u(-,0) = v, in Q.

Show the stability estimates

1 . t
() IVuIP < ll?, and (i) / S| Au(s)]? ds < llo|l>
Solution: See PDE Lecture Notes, Chapter 15.
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