Hjälpmedel: Inga hjälpmedel är tillätna Telefon: Leonid Gershuni: 0739-779268 2004–12–14 kl. 8.30-13.30

TMA372/MAN660 Partial Differential Equations TM

OBS! Skriv namn och personnummer på samtliga inlämnade papper.

1. Let α and β be positive constants. Give the piecewise linear finite element approximation procedure, on the uniform mesh, for the problem

$$-u''(x) = 1$$
, $0 < x < 1$; $u(0) = \alpha$, $u'(1) = \beta$.

2. Formulate the cG(1) method for the boundary value problem

$$-\Delta u + u = f, \quad x \in \Omega; \qquad u = 0, \quad x \in \partial\Omega.$$

Write down the matrix form of the resulting equation system using the following uniform mesh:

3. Consider the boundary value problem for the stationary heat flow in 1D:

$$(BVP) -(a(x)u'(x))' = f(x), 0 < x < 1; u(0) = u(1) = 0.$$

Formulate the corresponding variational formulation (VF), minimization problem (MP) and show that: $(BVP) \iff (VF) \iff (MP)$.

4. (a) Prove an a priori and an a posteriori error estimate for the finite element method for the problem

$$-u''(x) + u'(x) = f(x), \quad 0 < x < 1; \qquad u(0) = u(1) = 0.$$

- (b) Give an adaptive algorithm based on a posteriori estimates.
- 5. Let Ω be a bounded domain in \mathbb{R}^d . Consider the initial-boundary value problem

$$\begin{cases} u_t - \Delta u = 0, & \text{in } \Omega \times \mathbb{R}^+, \\ u = 0, & \text{on } \partial\Omega \times \mathbb{R}^+, \\ u(\cdot, 0) = v, & \text{in } \Omega. \end{cases}$$

Show the stability estimates

(i)
$$||\nabla u(t)||^2 \le \frac{1}{2t}||v||^2$$
, and (ii) $\int_0^t s||\Delta u(s)||^2 ds \le \frac{1}{4}||v||^2$.

TMA371 Partial Differential Equations TM, 2004-12-14. Solutions

1. Let α and β be positive constants. Give the piecewise linear finite element approximation procedure, on the uniform mesh, for the problem

$$-u''(x) = 1$$
, $0 < x < 1$; $u(0) = \alpha$, $u'(1) = \beta$.

Solution: Multiply the pde by a test function v with v(0) = 0, integrate over $x \in (0,1)$ and use partial integration to get

$$-[u'v]_0^1 + \int_0^1 u'v' \, dx = \int_0^1 v \, dx \iff$$

$$-u'(1)v(1) + u'(0)v(0) + \int_0^1 u'v' \, dx = \int_0^1 v \, dx \iff$$

$$-\beta v(1) + \int_0^1 u'v' \, dx = \int_0^1 v \, dx.$$

The continuous variational formulation is now formulated as follows: Find

$$(VF) u \in V := \{ w : \int_0^1 \left(w(x)^2 + w'(x)^2 \right) dx < \infty, \quad w(0) = \alpha \},$$

such that

$$\int_0^1 u'v' \, dx = \int_0^1 v \, dx + \beta v(1), \quad \forall v \in V^0,$$

where

$$V^{0} := \{ v : \int_{0}^{1} \left(v(x)^{2} + v'(x)^{2} \right) dx < \infty, \quad v(0) = 0 \}.$$

For the discrete version we let \mathcal{T}_h be a uniform partition: $0 = x_0 < x_1 < \ldots < x_{M+1}$ of [0,1] into the subintervals $I_n = [x_{n-1},x_n], \ n=1,\ldots M+1$. Here, we have M interior nodes: $x_1,\ldots x_M$, two boundary points: $x_0 = 0$ and $x_{M+1} = 1$ and hence M+1 intervals.

The finite element method (discrete variational formulation) is now formulated as follows: Find

(FEM) $U \in V_h := \{w_h : w_h \text{ is piecewise linear, continuous on } \mathcal{T}_h, \ w_h(0) = \alpha\},$ such that

(2)
$$\int_0^1 U' v_h' dx = \int_0^1 v_h dx + \beta v_h(1), \quad \forall v \in V_h^0,$$

where

$$V_h^0 := \{v_h : v_h \text{ is piecewise linear, continuous on } \mathcal{T}_h, \ v_h(0) = 0\}.$$

Using the basis functions φ_j , $j=0,\ldots M+1$, where $\varphi_1,\ldots \varphi_M$ are the usual hat-functions whereas φ_0 and φ_{M+1} are semi-hat-functions viz;

(3)
$$\varphi_{j}(x) = \begin{cases} 0, & x \notin [x_{j-1}, x_{j}] \\ \frac{x - x_{j-1}}{h} & x_{j-1} \le x \le x_{j} \\ \frac{x_{j+1} - x}{h} & x_{j} \le x \le x_{j+1} \end{cases}, \quad j = 1, \dots M.$$

and

$$\varphi_0(x) = \left\{ \begin{array}{ll} \frac{x_1-x}{h} & \quad 0 \leq x \leq x_1 \\ 0, & \quad x_1 \leq x \leq 1 \end{array} \right., \qquad \varphi_{M+1}(x) = \left\{ \begin{array}{ll} \frac{x-x_M}{h} & \quad x_M \leq x \leq x_{M+1} \\ 0, & \quad 0 \leq x \leq x_M. \end{array} \right.$$

In this way we may write

$$V_h = \alpha \varphi_0 \oplus [\varphi_1, \dots, \varphi_{M+1}], \quad V_h^0 = [\varphi_1, \dots, \varphi_{M+1}].$$

Thus every $U \in V_h$ can be written as $U = \alpha \varphi_0 + v_h$ where $v_h \in V_h^0$, i.e.,

$$U = \alpha \varphi_0 + \xi_{1\varphi_1} + \dots + \xi_{M+1} \varphi_{M+1} = \alpha \varphi_0 + \sum_{i=1}^{M+1} \xi_i \varphi_i \equiv \alpha \varphi_0 + \tilde{U},$$

where $\tilde{U} \in V_h^0$, and hence the problem (2) can equivalently be formulated as to find ξ_1, \ldots, ξ_{M+1} such that

$$\int_0^1 \left(\alpha \varphi_0' + \sum_{i=1}^{M+1} \xi_i \varphi_i' \right) \varphi_j' \, dx = \int_0^1 \varphi_j \, dx + \beta \varphi_j(1), \quad j = 1, \dots M + 1,$$

which can be written as

$$\sum_{i=1}^{M+1} \left(\int_0^1 \varphi_j' \varphi_i' \, dx \right) \xi_i = - \int_0^1 \varphi_0' \varphi_j' \, dx + \int_0^1 \varphi_j \, dx + \beta \varphi_j(1), \quad j = 1, \dots M+1,$$

or equivalently $A\xi = b$ where $A = (a_{ij})$ is the tridiagonal matrix with entries

$$a_{ii} = 2$$
, $a_{i,i+1} = a_{i+1,i} = -1$, $i = 1, \dots M$, and $a_{M+1,M+1} = 1$,

i.e.,

$$A = \frac{1}{h} \begin{bmatrix} 2 & -1 & 0 & 0 & \dots & 0 & 0 \\ -1 & 2 & -1 & 0 & \dots & 0 & 0 \\ \dots & & & & & & \\ \dots & & & & & & \\ 0 & 0 & \dots & 0 & -1 & 2 & -1 \\ 0 & 0 & \dots & 0 & 0 & -1 & 1 \end{bmatrix},$$

and the unkown ξ and the data b are given by

$$\xi = \begin{bmatrix} \xi_1 \\ \xi_2 \\ \vdots \\ \xi_{M+1} \end{bmatrix}, \qquad b = \begin{bmatrix} \int_0^1 \varphi_1 \, dx - \alpha \int_0^1 \varphi_0' \varphi_1' \, dx \\ \int_0^1 \varphi_2 \, dx \\ \vdots \\ \int_0^1 \varphi_M \, dx \\ \int_0^1 \varphi_{M+1} \, dx + \beta \varphi_{M+1}(1) \end{bmatrix} = \begin{bmatrix} h + \frac{1}{h} \alpha \\ h \\ \vdots \\ h \\ \frac{h}{2} + \beta \end{bmatrix}.$$

2. Formulate the cG(1) method for the boundary value problem

$$-\Delta u + u = f, \quad x \in \Omega; \qquad u = 0, \quad x \in \partial \Omega.$$

Write down the matrix form of the resulting equation system using the following uniform mesh:

Solution: Let V_h be the usual finite element space cosisting of continuous piecewise linear functions satisfying the boundary condition v=0 on $\partial\Omega$. The cG(1) method is: Find $U \in V_h$ such that

$$(\nabla U, \nabla v) + (U, v) = (f, v) \quad \forall v \in V_h$$

Making the "Ansatz" $U(x) = \sum_{i=1}^{4} \xi_i \varphi_i(x)$, where φ_i are the standard basis functions, we obtain the system of equations

$$\sum_{i=1}^{4} \xi_i \left(\int_{\Omega} \nabla \varphi_i \cdot \nabla \varphi_j \, dx + \int_{\Omega} \varphi_i \varphi_j \, dx \right) = \int_{\Omega} f \varphi_j \, dx, \quad j = 1, \dots, 4,$$

or, in matrix form,

$$(S+M)\xi = F$$
,

where $S_{ij} = (\nabla \varphi_i, \nabla \varphi_j)$ is the stiffness matrix, $M_{ij} = (\varphi_i, \varphi_j)$ is the mass matrix, and $F_j = (f, \varphi_j)$ is the load vector.

We first compute the mass and stiffness amtrix for the reference triangle T. The local basis functions are

$$\phi_{1}(x_{1}, x_{2}) = 1 - \frac{x_{1}}{h} - \frac{x_{2}}{h}, \qquad \nabla \phi_{1}(x_{1}, x_{2}) = -\frac{1}{h} \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

$$\phi_{2}(x_{1}, x_{2}) = \frac{x_{1}}{h}, \qquad \nabla \phi_{2}(x_{1}, x_{2}) = \frac{1}{h} \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$

$$\phi_{3}(x_{1}, x_{2}) = \frac{x_{2}}{h}, \qquad \nabla \phi_{3}(x_{1}, x_{2}) = \frac{1}{h} \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Hence, with $|T| = \int_T dz = h^2/2$,

$$m_{11} = (\phi_1, \phi_1) = \int_T \phi_1^2 dx = h^2 \int_0^1 \int_0^{1-x_2} (1 - x_1 - x_2)^2 dx_1 dx_2 = \frac{h^2}{12},$$

$$s_{11} = (\nabla \phi_1, \nabla \phi_1) = \int_T |\nabla \phi_1|^2 dx = \frac{2}{h^2} |T| = 1.$$

Alternatively, we can use the midpoint rule, which is exact for polynomials of degree 2 (precision 3):

$$m_{11} = (\phi_1, \phi_1) = \int_T \phi_1^2 dx = \frac{|T|}{3} \sum_{j=1}^3 \phi_1(\hat{x}_j)^2 = \frac{h^2}{6} \left(0 + \frac{1}{4} + \frac{1}{4} \right) = \frac{h^2}{12},$$

where \hat{x}_j are the midpoins of the edges. Similarly we can compute the other elements and obtain

$$m = \frac{h^2}{24} \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}, \qquad s = \frac{1}{2} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}.$$

We can now assemble the global matrices M and S from the local ones m and s:

$$\begin{split} M_{11} &= M_{44} = 8m_{22} = \frac{8}{12}h^2, & S_{11} &= S_{44} = 8s_{22} = 4, \\ M_{12} &= M_{13} = M_{24} = M_{34} = 2m_{12} = \frac{1}{12}h^2, & S_{12} &= S_{13} = S_{24} = S_{34} = 2s_{12} = -1, \\ M_{14} &= 2m_{23} = \frac{1}{12}h^2, & S_{14} &= 2s_{23} = 0, \\ M_{22} &= M_{33} = 4m_{11} = \frac{4}{12}h^2, & S_{22} &= S_{33} = 4s_{11} = 4, \\ M_{23} &= 0, & S_{23} &= 0. \end{split}$$

The remaining matrix elements are obtained by symmetry $M_{ij} = M_{ji}$, $S_{ij} = S_{ji}$. Hence,

$$M = \frac{h^2}{12} \begin{bmatrix} 8 & 1 & 1 & 1 \\ 1 & 4 & 0 & 1 \\ 1 & 0 & 4 & 1 \\ 1 & 1 & 1 & 8 \end{bmatrix}, \qquad S = \begin{bmatrix} 4 & -1 & -1 & 0 \\ -1 & 4 & 0 & -1 \\ -1 & 0 & 4 & -1 \\ 0 & -1 & -1 & 4 \end{bmatrix}.$$

3. Consider the boundary value problem for the stationary heat flow in 1D:

$$(BVP)$$
 $-(a(x)u'(x))' = f(x), 0 < x < 1; u(0) = u(1) = 0.$

Formulate the corresponding variational formulation (VF), minimization problem (MP) and show that: $(BVP) \iff (VF) \iff (MP)$.

Solution: See PDE Lecture Notes, Chapter 8.

4. (a) Prove an a priori and an a posteriori error estimate for the finite element method for the problem

$$-u''(x) + u'(x) = f(x), \quad 0 < x < 1; \quad u(0) = u(1) = 0.$$

(b) Give an adaptive algorithm based on a posteriori estimates.

Solution: (a) We multiply the differential equation by a test function $v \in H_0^1(I)$, I = (0,1) and integrate over I. Using partial integration and the boundary conditions we get the following variational problem: Find $u \in H_0^1(I)$ such that

(4)
$$\int_{I} (u'v' + u'v) = \int_{I} fv, \quad \forall v \in H_0^1(I).$$

A Finite Element Method with cG(1) reads as follows: Find $U \in V_h^0$ such that

(5)
$$\int_{I} (U'v' + U'v) = \int_{I} fv, \quad \forall v \in V_h^0 \subset H_0^1(I),$$

where

 $V_h^0 = \{v : v \text{ is piecewise linear and continuous in a partition of } I, \ v(0) = v(1) = 0\}.$

Now let e = u - U, then (1)-(2) gives that

(6)
$$\int_{I} (e'v' + e'v) = 0, \quad \forall v \in V_h^0.$$

We note that using e(0) = e(1) = 0, we get

(7)
$$\int_{I} e'e = \int_{I} \frac{1}{2} \frac{d}{dx} \left(e^{2}\right) = \frac{1}{2} (e^{2})|_{0}^{1} = 0.$$

Further, usig Poicare inequality we have

$$||e||^2 \le ||e'||^2$$
.

A priori error estimate: We use Poicare inequality and (7) to get

$$\begin{aligned} \|e\|_{H^{1}}^{2} &= \int_{I} (e'e' + ee) \leq 2 \int_{I} e'e' = 2 \int_{I} (e'e' + e'e) = 2 \int_{I} \left(e'(u - U)' + e'(u - U) \right) \\ &= 2 \int_{I} \left(e'(u - \pi_{h}u)' + e'(u - \pi_{h}u) \right) + 2 \int_{I} \left(e'(\pi_{h}u - U)' + e'(\pi_{h}u - U) \right) \\ &= \left\{ v = U - \pi_{h}u \text{ in } (6) \right\} = 2 \int_{I} \left(e'(u - \pi_{h}u)' + e'(u - \pi_{h}u) \right) \\ &\leq 2 \|(u - \pi_{h}u)'\| \|e'\| + 2 \|u - \pi_{h}u\| \|e'\| \\ &\leq 2 C_{i} \{ \|hu''\| + \|h^{2}u''\| \} \|e\|_{H^{1}}, \end{aligned}$$

this gives that

$$||e||_{H^1} \le C_i \{||hu''|| + ||h^2u''||\},$$

which is the a priori error estimate.

A posteriori error estimate:

$$||e||_{H^{1}}^{2} = \int_{I} (e'e' + ee) \leq 2 \int_{I} e'e' = 2 \int_{I} (e'e' + e'e)$$

$$= 2 \int_{I} ((u - U)'e' + (u - U)'e) = \{v = e \text{ in } (4)\}$$

$$= 2 \int_{I} fe - \int_{I} (U'e' + U'e) = \{v = \pi_{h}e \text{ in } (5)\}$$

$$= \int_{I} f(e - \pi_{h}e) - \int_{I} \left(U'(e - \pi_{h}e)' + U'(e - \pi_{h}e)\right)$$

$$= \{P.I. \text{ on each subinterval}\} = \int_{I} \mathcal{R}(U)(e - \pi_{h}e),$$

where $\mathcal{R}(U) := f + U'' - U' = f - U'$, (for approximation with picewise linears, $U \equiv 0$, on each subinterval). Thus (5) implies that

$$||e||_{H^1}^2 \le ||h\mathcal{R}(U)|| ||h^{-1}(e - \pi_h e)||$$

$$\le C_i ||h\mathcal{R}(U)|| ||e'|| \le C_i ||h\mathcal{R}(U)|| ||e||_{H^1},$$

where C_i is an interpolation constant, and hence we have with $\|\cdot\| = \|\cdot\|_{L_2(I)}$ that

$$||e||_{H^1} \leq C_i ||h\mathcal{R}(U)||.$$

(b) An adaptive procedure can be formulated in the following steps:

Step I. Start with a given mesh size h and a given error tolerance "TOL". Compute U and $\mathcal{R}(U)$ corresponding to this h

Step II. Compare $C_i ||h\mathcal{R}(U)||$ with the tolerance "TOL":

IIa). If

$$C_i ||h\mathcal{R}(U)|| < TOL,$$

then accept U as an appropriate cG(1) approximate solution.

IIb). If

$$C_i || h \mathcal{R}(U) || > TOL,$$

then refine the mish on the subintervals with large $\mathcal{R}(U)$ contributions, thus obain a new mesh and return to Step I.

5. Let Ω be a bounded domain in \mathbb{R}^d . Consider the initial-boundary value problem

$$\begin{cases} u_t - \Delta u = 0, & \text{in } \Omega \times \mathbb{R}^+, \\ u = 0, & \text{on } \partial \Omega \times \mathbb{R}^+, \\ u(\cdot, 0) = v, & \text{in } \Omega. \end{cases}$$

Show the stability estimates

$$(i) \quad ||\nabla u(t)||^2 \leq \frac{1}{2t}||v||^2, \quad \text{and} \qquad (ii) \quad \int_0^t s||\Delta u(s)||^2 \, ds \leq \frac{1}{4}||v||^2.$$

Solution: See PDE Lecture Notes, Chapter 15.

MA