
Göteborg 16 December 2019Data och Informationsteknik / Computer Science and Engineering
Chalmers University of Technology

COMPUTER PROGRAMMING part A TIN213

Date: 16 December 2019 Time: 08.30-11.30 Place: SB Multi Hall

Course responsible: Anton Ekblad, tel. 070 7579 070
Will visit hall at 09.00 and 11.00

Examiner: Krasimir Angelov

Allowed aids: Skansholm, Java Direkt med Swing
or Bravaco, Simonson, Java Programming: From the Ground Up
(Underlinings and light annotations are permitted.)

No calculators are permitted.

Grading scale: Maximum total 30 points
For this exam the following grades will be given:
3: 15 points, 4: 20 points, 5: 25 points

Exam review: date 2020-01-29, 12:00-13:00
room EDIT 6110

• Read through the whole exam before answering any questions.

• Start each new question on a new page.

• Write your anonymous code and the question number on each page.

• You may write your answers in English or Swedish.

• Write clearly. Unreadable = wrong!

• Try to answer all the questions. Partial answers can still get partial credit. There are 4 questions.

• Points may be deducted for solutions which are unnecessarily complex or uses poor programming
practices.

• A quick reference guide to Java is included, starting on page 6.

Good luck!

1

1 Matchstick Game

In the game of matchsticks, two players take turns removing 1, 2 or 3 matches from a row of matches on
a table. Initially, there are 27 matches on the table. The player who removes the last match loses the
game.

(a) Your task: write a class Matches which models the matchstick game. The class must have the
following public constructors and methods:

• A constructor Matches(int matches, int maxPick), which sets the initial number of
matches on the table to matches, and the maximum number of matches a player can take
during their turn to maxPick (the “max pick” game rule).

• A parameterless constructor Matches() which sets the number of matches and the max
pick game rule to 27 and 3 respectively (i.e. the default rules of the game).

• A method int getPlayer() which returns 1 if it’s player 1’s turn to remove matches, or
2 if it’s player 2’s turn.

• A method int getWinner(), which returns 1 if player 1 has won the game, 2 if player 2
has won the game, or 0 is the game is still on.

• A method int getMaxPick(), which returns the maximum number of matches a player
may remove during their turn. This method depends on both the max pick rule and on
how many matches are left on the table: if there are only two matches left, getMaxPick
should return at most 2, even if the maximum pick according to the game rules is 3.

• A method void remove(int n) which removes n matches from the table on behalf of the
current player. It should then switch the turn to the other player. Repeatedly calling
remove(1) should result in player 1 removing one match, then player 2 removing one,
etc., until all matches are gone and the player who took the last turn loses the game.

• A method String toString() which returns a string representation of the current game
state, giving the current player as well as a visual representation of the matches on the
table. Use one pipe (|) character to represent each match still on the table. Fig. 1 shows
the output of toString() called on a newly created Matches object.

|||||||||||||||||||||||||||

Next up: Player 1

Figure 1: A game with 27 matches and player 1 about to take a turn.

You may add any fields and (private) helper methods you need to implement the above
specification. For full marks, your solution should respect the DRY principle: Don’t Repeat
Yourself. (6 points)

(b) Your task: write a static main method, which uses your Matches class to let two users play
a game of matchsticks. Use Scanner for input, and System.out.println for output. For full
marks, your main method should not allow players to break the rules of the game (i.e. by re-
moving too few or too many matches), instead asking them to re-enter the number of matches
to remove if they attempt to remove too few or too many. (4 points)

10 points total

2

2 Reading Code

(a) Consider the following code:

public static boolean p(String s) {

for(int i = 0; i < s.length(); i++) {

if(s.charAt(i) != s.charAt(s.length()-i-1)) {

return false;

}

}

return true;

}

Your task: explain briefly the purpose of the method p, and suggest a more descriptive name
for it. (2 points)

(b) Consider the following code:

1 public static int foo(int x) {

2 if(x % 7 == 2) {

3 throw new IllegalArgumentException();

4 }

5 return x+x;

6 }

7

8 public static double bar(String s) {

9 double d = 2;

10 try {

11 d += foo(s.length())/2;

12 } catch (ArithmeticException e) {

13 System.out.println("foo");

14 } finally {

15 System.out.println("bar");

16 }

17 return d+1;

18 }

19

20 public static void main(String[] args) {

21 try {

22 System.out.println(bar("Merry Christmas!"));

23 System.out.println("And a Happy New Year!");

24 } catch (IllegalArgumentException e) {

25 System.out.println("baz");

26 }

27 }

Your task: what will the program print when executed? Briefly motivate your answer.
(2 points)

(c) Your task: what would the program from part (b) print if we were to change line 22 to
System.out.println(bar("God Jul!"));? Briefly motivate your answer. (2 points)

6 points total

3

3 The Door

Your employer has recently gotten into the business of selling electronic doors. To save on costs, your
boss has decided to buy the absolute cheapest door they can find, and have your team add the logic
to turn this “stupid” door into a useful product. The stupid door you are working with only exposes a
single method:

StupidDoor.setOpen(boolean open);

This method controls the physical state of the door: calling StupidDoor.setOpen(true) will open the
door and leave it open until further notice, and StupidDoor.setOpen(false) will close it.

Unfortunately, your coworker, who was in charge of the project, quit before completing the task,
and Fig. 2 shows the code they left behind. This code is in a very poor state, and does not fullfil the
specification for the door control program as given to you by your boss.

public class SmartDoor { 1

private boolean locked = false; 2

private boolean open = false; 3

private int pin; 4

5

public SmartDoor(int pin) { 6

this.pin = pin; 7

} 8

9

public void lock() { 10

this.locked = true; 11

} 12

13

public void unlock(int pin) { 14

if(this.pin == pin) { 15

this.locked = false; 16

} 17

} 18

19

public void open(int seconds) { 20

if(!this.locked) { 21

StupidDoor.setOpen(true); 22

DoorUtils.sleep(seconds); 23

StupidDoor.setOpen(false); 24

} 25

} 26

} 27

Figure 2: The unfinished door code.

The specification for the electronic door control program is as follows:

• The door is always in exactly one of the following states: locked, unlocked (but closed), or open.

• The door can only be locked and opened when it is unlocked and closed.

• The door can only be unlocked when it is locked.

• When opening the door, a number of seconds
to keep the door open must be specified. For
health and safety reasons the door must never
be open for less than 10 seconds, and for secu-
rity reasons it must never be open for more than
60 seconds. The method DoorUtils.sleep(int

secs) is used to pause execution of the calling
method for secs seconds.

• The door requires a PIN to unlock. The PIN to
unlock the door must be passed as an argument
to the door’s constructor on startup. It must be
impossible to change the PIN of a SmartDoor

object that has already been constructed.

• Attempting to unlock the door with the wrong
PIN must result in a SecurityException being
thrown.

• If an argument passed to the class’ construc-
tor or methods would cause this specification
to be violated, regardless of the door’s internal
state, an IllegalArgumentException must be
thrown.

• If a method would cause a violation of this spec-
ification when called while the door is in a par-
ticular state, but might be permissible in some
other state, an IllegalStateException must
be thrown.

Your task: modify the class given in Fig. 2 so that it satisfies the specification. For full marks, your
solution must do its utmost to ensure that the specification can never be violated, even by programmer
mistake.

7 points

4

4 Bubble Sort

Bubble sort is an algorithm which sorts a sequence of elements in ascending order. The algorithm is
defined as follows:

1. Let the algorithm’s input be a sequence of elements a1..k of length k.

2. For each element ai in a1, a2 ... ak−1:

2.1. Compare ai to ai+1.

2.2. If ai is larger than ai+1 the sequence is unsorted, so let the elements ai and ai+1 swap places
with each other.

3. Repeat step 2 until the whole sequence ai is sorted, i.e. all of step 2. is executed without any
elements changing place.

(a) Your task: write a method void sort(int[] arr) which uses the bubble sort algorithm to
sort the array arr in ascending order. (5 points)

(b) Recall that unnecessarily mutating values can often lead to bugs which are surprisingly hard to
track down. Unfortunately, mutation is often crucial for performance. A common trick to write
code which is both safe and fast is to use mutation locally, while presenting an immutable, safe
interface to the user.

Your task: write a method int[] safeSort(int[] arr) which uses your sort method
from part (a) to return an array containing all values from arr (including duplicates), sorted
in ascending order, without modifying arr itself. (2 points)

7 points total

5

Java Quick Reference Guide

User Input and Output Java applications and applets can get input and output through the console
(command window) or through dialogue boxes as follows:

System.out.println("This is displayed on the console");

Scanner scanner = new Scanner(System.in);

String input = scanner.nextLine();

int n = scanner.nextInt();

import javax.swing.*;

JOptionPane.showMessageDialog(null,

"This is displayed in a dialogue box");

String input = JOptionPane.showInputDialog("Enter a string");

Data Types
boolean Boolean type, can be true or false
byte 1-byte signed integer
char Unicode character
short 2-byte signed integer
int 4-byte signed integer
long 8-byte signed integer
float Single-precision fraction, 6 significant figures
double Double-precision fraction, 15 significant figures

Operators
+ - * / % Arithmetic operators (% means remainder)
++ -- Increment of decrement by 1

result = ++i; means increment by 1 first
result = i++; means do the assignment first

+= -= *= /= %= etc. E.g. i+=2 is equivalent to i = i + 2

&& Logical AND, e.g. if (i > 50 && i < 70)

|| Logical OR, e.g. if (i < 0 || i > 100)

! Logical NOT, e.g. if (!endOfFile)

== != > >= < <= Relational operators

Control Flow - if . . . else if statements are formed as follows (the else clause is optional).

String dayname;

...

if (dayname.equals("Sat") || dayname.equals("Sun")) {

System.out.println("Hooray for the weekend");

}

else if (dayname.equals("Mon")) {

System.out.println("I don’t like Mondays");

}

else {

System.out.println("Not long for the weekend!");

}

6

Control Flow - Loops Java contains three loop mechanisms:

int i = 0;

while (i < 100) {

System.out.println("Next square is: " + i*i);

i++;

}

for (int i = 0; i < 100; i++) {

System.out.println("Next square is: " + i*i);

}

int positiveValue;

do {

positiveValue = getNumFromUser();

}

while (positiveValue < 0);

Defining Classes When you define a class, you define the data attributes (usually private) and the
methods (usually public) for a new data type. The class definition is placed in a .java file as follows:

// This file is Student.java. The class is declared

// public, so that it can be used anywhere in the program

public class Student {

private String name;

private int numCourses;

// Constructor to initialize all the data members

public Student(String name, int numCourses) {

this.name = name;

this.numCourses = numCourses;

}

// No-arg constructor, to initialize with defaults

public Student() {

this("Anon", 0); // Call other constructor

}

// Other methods

public void attendCourse() {

this.numCourses++;

}

}

To create an object and send messages to the object:

public class MyTestClass {

public static void main(String[] args) {

// Step 1 - Declare object references

// These refer to null initially in this example

Student me, you;

// Step 2 - Create new Student objects

me = new Student("Andy", 0);

you = new Student();

// Step 3 - Use the Student objects

7

me.attendCourse();

you.attendCourse()

}

}

Arrays An array behaves like an object. Arrays are created and manipulated as follows:

// Step 1 - Declare a reference to an array

int[] squares; // Could write int squares[];

// Step 2 - Create the array "object" itself

squares = new int[5];

// Creates array with 5 slots

// Step 3 - Initialize slots in the array

for (int i=0; i < squares.length; i++) {

squares[i] = i * i;

System.out.println(squares[i]);

}

Note that array elements start at [0], and that arrays have a length property that gives you the size
of the array. If you inadvertently exceed an array’s bounds, an exception is thrown at run time and the
program aborts.

Note: Arrays can also be set up using the following abbreviated syntax:

int[] primes = {2, 3, 5, 7, 11};

Static Variables A static variable is like a global variable for a class. In other words, you only get
one instance of the variable for the whole class, regardless of how many objects exist. static variables
are declared in the class as follows:

public class Account {

private String accnum; // Instance var

private double balance = 0.0; // Instance var

private static double intRate = 5.0; // Class var

...

}

Static Methods A static method in a class is one that can only access static items; it cannot
access any non-static data or methods. static methods are defined in the class as follows:

public class Account {

public static void setIntRate(double newRate) {

intRate = newRate;

}

public static double getIntRate() {

return intRate;

}

...

}

To invoke a static method, use the name of the class as follows:

public class MyTestClass {

public static void main(String[] args) {

System.out.println("Interest rate is" +

8

Account.getIntRate());

}

}

Exception Handling Exception handling is achieved through five keywords in Java:

try Statements that could cause an exception are placed in a ‘try’ block

catch The block of code where error processing is placed

finally An optional block of code after a ‘try’ block, for unconditional execution

throw Used in the low-level code to generate, or ‘throw’ an exception

throws Specifies the list of exceptions a method may throw

Here are some examples:

public class MyClass {

public void anyMethod() {

try {

func1();

func2();

func3();

}

catch (IOException e) {

System.out.println("IOException:" + e);

}

catch (MalformedURLException e) {

System.out.println("MalformedURLException:" + e);

}

finally {

System.out.println("This is always displayed");

}

}

public void func1() throws IOException {

...

}

public void func2() throws MalformedURLException {

...

}

public void func3() throws IOException, MalformedURLException {

...

}

}

9

Answers for TIN213 exam 2019-12-16Answers for TIN213 exam 2019-12-16

Question 1: MatchsticksQuestion 1: Matchsticks

import java.util.Scanner;

public class Matches {

 //////////////////

 // Part (a) //

 //////////////////

 private int matches;

 private final int maxPick;

 private int currentPlayer;

 // Private helper method

 private int nextPlayer() {

 return this.currentPlayer == 1 ? 2 : 1;

 }

 public Matches(int matches, int maxPick) {

 this.currentPlayer = 1;

 this.matches = matches;

 this.maxPick = maxPick;

 }

 public Matches() {

 this(27, 3);

 }

 public int getPlayer() {

 return this.currentPlayer;

 }

 public int getMaxPick() {

 return Math.min(this.matches, this.maxPick);

 }

 public int getWinner() {

 if(this.matches > 0) {

 return 0;

 } else {

 return this.getPlayer();

 }

 }

 public void remove(int matches) {

 this.matches -= matches;

 this.currentPlayer = this.nextPlayer();

 }

 public String toString() {

 String s = "";

 for(int i = 0; i < this.matches; i++) {

 s = s + "|";

 }

 s += "\nNext up: Player " + this.getPlayer();

 return s;

 }

 //////////////////

 // Part (b) //

 //////////////////

 public static void main(String[] args) {

 Scanner scan = new Scanner(System.in);

 Matches game = new Matches();

 while(game.getWinner() == 0) {

 System.out.println(game.toString());

 game.remove(promptMatches(scan, game));

 System.out.println();

 }

 System.out.println("Winner: Player " + game.getWinner());

 }

 // Part b: input helper for main method

 private static int promptMatches(Scanner scan, Matches game) {

 int matches;

 System.out.print("Take 1 to " + game.getMaxPick() + " matches: ");

 matches = scan.nextInt();

 while(matches < 1 || matches > game.getMaxPick()) {

 System.out.print("Bad number of matches, try again: ");

 matches = scan.nextInt();

 }

 return matches;

 }

}

Question 2: Reading CodeQuestion 2: Reading Code

a. The method returns true if its input is a palindrome, so a good name for it would be isPalindrome . b. bar baz c. bar 11.0 And
a Happy New Year!

Question 3: The DoorQuestion 3: The Door

public class Door {

 private boolean locked = false;

 private boolean open = false;

 private final int pin;

 public Door(int pin) {

 this.pin = pin;

 }

 public void lock() {

 if(this.open || this.locked) {

 throw new IllegalStateException();

 }

 this.locked = true;

 }

 public void unlock(int pin) {

 if(this.pin != pin) {

 throw new SecurityException();

 }

 if(!this.locked || this.open) {

 throw new IllegalStateException();

 }

 this.locked = false;

 }

 public void open(int seconds) {

 if(this.locked || this.open) {

 throw new IllegalStateException();

 }

 if(seconds < 10 || seconds > 60) {

 throw new IllegalArgumentException();

 }

 this.open = true;

 StupidDoor.setOpen(true);

 DoorUtils.sleep(seconds);

 StupidDoor.setOpen(false);

 this.open = false;

 }

}

Question 4: Bubble SortQuestion 4: Bubble Sort

public class Sort {

 // Part (a)

 public static void sort(int[] a) {

 boolean sorted;

 do {

 sorted = true;

 for(int i = 0; i < a.length-1; i++) {

 if(a[i] > a[i+1]) {

 int tmp = a[i];

 a[i] = a[i+1];

 a[i+1] = tmp;

 sorted = false;

 }

 }

 } while(!sorted);

 }

 // Part (b)

 public static int[] safeSort(int[] a) {

 int[] b = new int[a.length];

 for(int i = 0; i < a.length; i++) {

 b[i] = a[i];

 }

 sort(b);

 return b;

 }

}

