
Data och Informationsteknik / Computer Science and Engineering Chalmers University of Technology

Göteborg 17 December 2018

COMPUTER PROGRAMMING part A TIN213

Date: 17 December 2018 Time: 08.30-11.30 Place: SB Multi Hall

Course responsible: Robin Adams, tel. 076 856 48 64
Will visit hall at 09.00 and 11.00

Examiner: Robin Adams

Allowed aids: Skansholm, Java Direkt med Swing
or Bravaco, Simonson, Java Programming: From the Ground Up
(Underlinings and light annotations are permitted.)

No calculators are permitted.

Grading scale: Maxmimum total 30 points
For this exam the following grades will be given:
3: 15 points, 4: 20 points, 5: 25 points

Exam review: Tuesday 29 January 2019 09.00-11.00
EDIT 6466

• Answer all the questions. There are four (4) questions.

• Start each new question on a new page.

• Write your anonymous code and the question number on each page.

• You may write your answers in English or Swedish.

• A quick reference guide to Java is included, starting on page 5.

Good luck!

1

1. A positive integer n is called a perfect number if n is equal to the sum of all its proper factors (i.e.
all the factors of n that are not equal to n). For example, 28 is perfect because its factors are 1, 2,
4, 7, 14, 28; and

28 = 1 + 2 + 4 + 7 + 14 .

(a) Write a class method private static int sumOfFactors(int n) which, when given a pos-
itive integer n, returns the sum of all the proper factors of n. (3 points)

(b) Write a class method private static boolean isPerfect(int n) which, when given a
positive integer n, returns true if n is a perfect number and false if n is not. (You method
may call the method sumOfFactors from part 1a.) (2 ponts)

(c) Write the main method of a program that asks the user for an integer. If they enter a positive
integer n, the program prints out a list of all the perfect numbers from 1 to n. Your program
may use the class methods that you wrote in parts 1a and 1b. (2 points)

(d) Now write a new main method. The program should ask the user for a positive integer n,
then print out all the perfect numbers from 1 to n together with their proper factors, in the
following format. If the user enters the integer 1000, for example, the program should output
the following:

6 = 1 + 2 + 3

28 = 1 + 2 + 4 + 7 + 14

496 = 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248

Your program may use the class methods that you wrote in parts 1a and 1b. (4 points)

(11 points total)

2

2. Write a class TableTennis that describes keeps track of the score in a game of table tennis (bor-
dtennis).

The scoring rules for table tennis are as follows:

• When a player wins a serve, he or she scores 1 point.

• If one player reaches 11 points and the other player has 9 or fewer, then the player with 11
points wins.

• If the score becomes 10-10, this is known as deuce in English. After that, the first player to
score 2 more points than the other player wins.

The class should have:

• instance variables for the two players’ names and their scores, and a boolean instance variable
deuce that denotes whether the score has ever been 10-10.

• a constructor that takes the names of the two players as parameters, and sets the values of all
the instance variables as appropriate for the start of a game.

• four ’getter’ methods for instance variables called getPlayerOneName, getPlayerTwoName,
getPlayerOneScore and getPlayerTwoScore.

• a method
public void scoreOne()

that is called when player one scores a point.

• a method
public void scoreTwo()

that is called when player two scores a point.

• a method
public String toString()

that returns a string displaying the current state of the game in the following format:
Falck Mattias: 7 Karlsson Kristian: 9

• a method
public int winner()

that should return 1 if player one has won, 2 if player two has won, or 0 if the game is not yet
over.

(9 points)

3

3. I am trying to solve the following problem.

Let A be the point (1, 1), B be the point (3, 1) and C be the point (1, 3). Let D be the
midpoint of A and B, and E the midpoint of A and C. What are the coordinates of D
and E?

I have written the following code which I think should answer the problem.

public class Point {

private double x;

private double y;

public Point(double x, double y) {

this.x = x;

this.y = y;

}

public String toString() {

return String.format("(%.1f, %.1f)", x, y);

}

public Point midPoint(Point p) {

this.x = (this.x + p.x) / 2;

this.y = (this.y + p.y) / 2;

return new Point(this.x, this.y);

}

public static void main(String[] args) {

Point pointA = new Point(1, 1);

Point pointB = new Point(3, 1);

Point pointC = new Point(1, 3);

Point pointD = pointA.midPoint(pointB);

Point pointE = pointA.midPoint(pointC);

System.out.println("Point D is " + pointD);

System.out.println("Point E is " + pointE);

}

}

However, to my surprise, the program produces the following output.

Point D is (2.0, 1.0)

Point E is (1.5, 2.0)

I am sure this is not the right answer!

How should I change my program to fix the bug?

(3 points)

4. Write a method public int missingElement(int[] a). The method takes an array a of length
99 which contains all the integers from 1 to 100 (not necessarily in order), except one number is
missing. The method should return the value of the missing number.

Note: For a maximum score on this question, your solution should be ’fast’, i.e. it should not read
the values in the array more than once. A ’slow’ solution will score a maximum of 5 points.

(7 points)

4

Java Quick Reference Guide

User Input and Output Java applications and applets can get input and output through the console
(command window) or through dialogue boxes as follows:

System.out.println("This is displayed on the console");

Scanner scanner = new Scanner(System.in);

String input = scanner.nextLine();

int n = scanner.nextInt();

import javax.swing.*;

JOptionPane.showMessageDialog(null,

"This is displayed in a dialogue box");

String input = JOptionPane.showInputDialog("Enter a string");

Data Types
boolean Boolean type, can be true or false
byte 1-byte signed integer
char Unicode character
short 2-byte signed integer
int 4-byte signed integer
long 8-byte signed integer
float Single-precision fraction, 6 significant figures
double Double-precision fraction, 15 significant figures

Operators
+ - * / % Arithmetic operators (% means remainder)
++ -- Increment of decrement by 1

result = ++i; means increment by 1 first
result = i++; means do the assignment first

+= -= *= /= %= etc. E.g. i+=2 is equivalent to i = i + 2

&& Logical AND, e.g. if (i > 50 && i < 70)

|| Logical OR, e.g. if (i < 0 || i > 100)

! Logical NOT, e.g. if (!endOfFile)

== != > >= < <= Relational operators

Control Flow - if . . . else if statements are formed as follows (the else clause is optional).

String dayname;

...

if (dayname.equals("Sat") || dayname.equals("Sun")) {

System.out.println("Hooray for the weekend");

}

else if (dayname.equals("Mon")) {

System.out.println("I dont like Mondays");

}

else {

System.out.println("Not long for the weekend!");

}

5

Control Flow - Loops Java contains three loop mechanisms:

int i = 0;

while (i < 100) {

System.out.println("Next square is: " + i*i);

i++;

}

for (int i = 0; i < 100; i++) {

System.out.println("Next square is: " + i*i);

}

int positiveValue;

do {

positiveValue = getNumFromUser();

}

while (positiveValue < 0);

Defining Classes When you define a class, you define the data attributes (usually private) and the
methods (usually public) for a new data type. The class definition is placed in a .java file as follows:

// This file is Student.java. The class is declared

// public, so that it can be used anywhere in the program

public class Student {

private String name;

private int numCourses;

// Constructor to initialize all the data members

public Student(String name, int numCourses) {

this.name = name;

this.numCourses = numCourses;

}

// No-arg constructor, to initialize with defaults

public Student() {

this("Anon", 0); // Call other constructor

}

// Other methods

public void attendCourse() {

this.numCourses++;

}

}

To create an object and send messages to the object:

public class MyTestClass {

public static void main(String[] args) {

// Step 1 - Declare object references

// These refer to null initially in this example

Student me, you;

// Step 2 - Create new Student objects

me = new Student("Andy", 0);

you = new Student();

// Step 3 - Use the Student objects

6

me.attendCourse();

you.attendCourse()

}

}

Arrays An array behaves like an object. Arrays are created and manipulated as follows:

// Step 1 - Declare a reference to an array

int[] squares; // Could write int squares[];

// Step 2 - Create the array "object" itself

squares = new int[5];

// Creates array with 5 slots

// Step 3 - Initialize slots in the array

for (int i=0; i < squares.length; i++) {

squares[i] = i * i;

System.out.println(squares[i]);

}

Note that array elements start at [0], and that arrays have a length property that gives you the size
of the array. If you inadvertently exceed an array’s bounds, an exception is thrown at run time and the
program aborts.

Note: Arrays can also be set up using the following abbreviated syntax:

int[] primes = {2, 3, 5, 7, 11};

Static Variables A static variable is like a global variable for a class. In other words, you only get
one instance of the variable for the whole class, regardless of how many objects exist. static variables
are declared in the class as follows:

public class Account {

private String accnum; // Instance var

private double balance = 0.0; // Instance var

private static double intRate = 5.0; // Class var

...

}

Static Methods A static method in a class is one that can only access static items; it cannot
access any non-static data or methods. static methods are defined in the class as follows:

public class Account {

public static void setIntRate(double newRate) {

intRate = newRate;

}

public static double getIntRate() {

return intRate;

}

...

}

To invoke a static method, use the name of the class as follows:

public class MyTestClass {

public static void main(String[] args) {

System.out.println("Interest rate is" +

7

Account.getIntRate());

}

}

Exception Handling Exception handling is achieved through five keywords in Java:

try Statements that could cause an exception are placed in a try block

catch The block of code where error processing is placed

finally An optional block of code after a try block, for unconditional execution

throw Used in the low-level code to generate, or throw an exception

throws Specifies the list of exceptions a method may throw

Here are some examples:

public class MyClass {

public void anyMethod() {

try {

func1();

func2();

func3();

}

catch (IOException e) {

System.out.println("IOException:" + e);

}

catch (MalformedURLException e) {

System.out.println("MalformedURLException:" + e);

}

finally {

System.out.println("This is always displayed");

}

}

public void func1() throws IOException {

...

}

public void func2() throws MalformedURLException {

...

}

public void func3() throws IOException, MalformedURLException {

...

}

}

8

1. a)

 private static int sumOfFactors(int n) {

 int sum = 0;

 for (int i = 1; i < n; i++) {

 if (n % i == 0) {

 sum += i;

 }

 }

 return sum;

 }

1. b)

 private static boolean isPerfect(int n) {

 return (n == sumOfFactors(n));

 }

1. c)

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.println("Please enter a positive integer");

 int n = scanner.nextInt();

 for (int i = 1; i <= n; i++) {

 if (isPerfect(i)) {

 System.out.println(i);

 }

 }

 }

1. d)

 public static void main(String[] args) {

 Scanner scanner = new Scanner(System.in);

 System.out.println("Please enter a positive integer");

 int n = scanner.nextInt();

 for (int i = 1; i <= n; i++) {

 if (isPerfect(i)) {

 System.out.printf("%d = 1", i);

 for (int j = 2; j < i; j++) {

 if (i % j == 0) {

 System.out.printf(" + %d", j);

 }

 }

 System.out.println();

 }

 }

 }

2.

public class TableTennis {

 private String playerOneName;

 private String playerTwoName;

 private int playerOneScore;

 private int playerTwoScore;

 private boolean deuce;

 public TableTennis(String playerOneName, String playerTwoName) {

 this.playerOneName = playerOneName;

 this.playerTwoName = playerTwoName;

 this.playerOneScore = 0;

 this.playerTwoScore = 0;

 this.deuce = false;

 }

 public String getPlayerOneName() {

 return this.playerOneName;

 }

 public String getPlayerTwoName() {

 return this.playerTwoName;

 }

 public int getPlayerOneScore() {

 return this.playerOneScore;

 }

 public int getPlayerTwoScore() {

 return this.playerTwoScore;

 }

 public void scoreOne() {

 this.playerOneScore++;

 if (this.playerOneScore == 10 && this.playerTwoScore == 10) {

 this.deuce = true;

 }

 }

 public void scoreTwo() {

 this.playerTwoScore++;

 if (this.playerOneScore == 10 && this.playerTwoScore == 10) {

 this.deuce = true;

 }

 }

 @Override

 public String toString() {

 return String.format("%s: %2d %s: %2d", this.playerOneName,

this.playerOneScore, this.playerTwoName, this.playerTwoScore);

 }

 public int winner() {

 if (!this.deuce && this.playerOneScore > 10) {

 return 1;

 }

 if (!this.deuce && this.playerTwoScore > 10) {

 return 2;

 }

 if (this.deuce && this.playerOneScore >= this.playerTwoScore + 2) {

 return 1;

 }

 if (this.deuce && this.playerTwoScore >= this.playerOneScore + 2) {

 return 2;

 }

 return 0;

 }

}

3. Change the midPoint method to:

public Point midPoint(Point p) {

 double x = (this.x + p.x) / 2;

 double y = (this.y + p.y) / 2;

 return new Point(x, y);

}

4. A slow solution:

 public int missingElement(int[] a) {

 for (int i = 1; i <= 100; i++) {

 if (isMissing(a, i)) {

 return i;

 }

 }

 }

 private boolean isMissing(int[] a, int i) {

 for (int j : a) {

 if (j == i) {

 return false;

 }

 }

 return true;

 }

A fast solution:

 public int missingElement(int[] a) {

 int sum = 0;

 for (int j : a) {

 sum += j;

 }

 return 5050 - sum;

 }

