
Information theory for complex systems – FFR050

Time: March 16, 2005, 14.00 – 18.00.
Allowed material: anything except other person.
Examiner/teacher: Kristian Lindgren, tel. 772 3131.

The results are planned to be posted outside my office on Wednesday 13.00 (March 23), where we may also
discuss the solutions. (You may also ask about your result by email.)

1. Mathematical requirements for entropy. The quantity S[P] that we have used for
entropy of a distribution P = {p1, p2, …, pn} over microstates (1, 2, …, n) is the only
quantity fulfilling the following four conditions: (i) S is symmetric with respect to the
probabilities, (ii) S is a continuous function of the probabilities, (iii) The information
obtained when one gets to know the outcome of two equally probable events is 1 bit, and
finally (iv):
The expected gain of information is the same for (I) an immediate observation of the
microstate as for (II) a two step observation in which one distinguishes between, say,
state 1 and state 2 only if a first observation rejects the other states.

Express the last condition (iv) in mathematical terms, i.e., express the entropy S as a sum
of two entropies from two measurements as described in (II). Show that this expression
holds for the Shannon definition of entropy: S = Σ pk log(1/ pk ).

(8 p)

2. CA entropy.
Consider a one-dimensional cellular automaton given by elementary rule 71 (where
configurations 110, 010, 001, and 000 result in a 1 and the rest give 0). Let the initial state
be characterised by the following finite state automaton
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where the probabilities for choosing an arc is always the same (1/2) if there is a choice.
What is the initial entropy (t = 0), and what is the entropy at t = 1 and t = 2?

(12 p)



3. Happy agents. Consider an infinite one-dimensional lattice system (of cells) in which
each cell may be inhabited by a red (R) individual, a blue (B) individual, a pair (RB of
agents with different colours), or the cell may be empty. Assume equal densities of
individuals R and B of 1/4 each. Each individual has a happiness level being the sum of
the happiness from the relation with the closest neighbours. If there is a pair in a cell the
happiness of that cell is 4H (with H being a positive “happiness” constant), and then there
is no contribution from the neighbouring cells. If there is a single individual in a cell, the
happiness of that individual get a contribution of H/2 from each single living neighbour
of opposite colour (to the left and to the right, but no contribution from neighbour pairs).
Empty cells do not contribute to happiness.

If you know that the average happiness is w, how would you guess that the system looks
like in equilibrium, using information-theoretic arguments. You may answer in terms of a
set of equations that you need not solve. Discuss what happends if the "temperature" is
low (limit of zero temperature), with the interpretation that a low temperature
corresponds to a high "happiness". What is the entropy in this limit?

(If you prefer, all this can be thought of as molecules A and B that may aggregate to a
larger molecules AB, with the interpretation of H as a negative interaction energy
constant.)
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4. Lattice gas entropy. Consider an infinite 2-dimensional lattice gas constructed in the
following way. The space is a square lattice and in each cell up to four particles may be
present (one in each direction). The system evolves in discrete time, and in each time step
there is movement and collision. Particles move from one cell to the next according to the
direction of the particle. A collision occurs if and only if exactly two particles enter a cell
with opposite directions, and then the direction of these particles are shifted so that they
leave perpendicular to their initial directions. The two processes in a single time step is
illustrated in the following figure:
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Suppose we have a system where we initially (at t = 0) have equal densities of the four
particle directions (ρ/4 each with ρ being the overall particle density), but where particles
initially are present only in cells where all particle directions are present. Assume that
these cells, each containing four particles, are randomly distributed over the whole lattice.

Consider the entropy s of the spatial configuration of particles, based on the 2-
dimensional block entropy
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What is the entropy s at t = 0? How does the entropy change in the time evolution?

If one would estimate the entropy using a finite block size m after very long time T, with
T >> m, what result should one expect? What is the explanation?

(9 p)



5. Chaos and information. Let a mapping f(x) be defined by the figure below (so that
f(0) = α, f(1/4) = 1/2, f(3/4) = 1, f(1) = 0, with 0 ≤ α ≤ 1/2.
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Consider the dynamical system

xt+1  =  f(xt) .

a) At which value of α < 1/2 does the system become chaotic when decreasing from
1/2?

b) What is the behaviour for α close to 1/2 (above the critical value derived above).
Describe qualitatively only.

Assume from now on that α = 0.

c) Find the invariant measure µ that characterises the chaotic behaviour, and determine
the corresponding Lyapunov exponent λ by using that measure. Find a partition that has a
symbolic dynamics with a measure entropy sµ that equals the Lyapunov exponent (as one
should expect).

c) Suppose that we at a certain time t observe the system in the region given by  x > 3/4.
If we find the system in this region again three time steps later (at t + 3), how much
information do we gain by this observation?

(12 p)








