Chalmers University of Technology Department of Applied Physics Aleksandar Matic/Johan Sjöström

Exam in Soft Matter Physics TIF015/FIM110

Time and place: Tuesday August 19 14.00-18.00 2008, Väg och Vatten. **Examiners:** Aleksandar Matic (0730-346294), Johan Sjöström (0737279624)

Allowed material: Physics Handbook or equivalent, dictionary and pocket calculator

Grading: 26 points, is required for a passed.

Exam results: Exam results are displayed 23/1 outside office S2046.

Review of the exam: Contact Aleksandar Matic or Johan Sjöström after 28/8 Note: All answers must be in English. Motivate all answers carefully. Answers

without motivation give no credit.

- 1. a) Sketch the behaviour of the volume and specific heat as a function of temperature around the glass transition. Compare to the case of crystallization. (4p)
- b) Explain the Kauzman paradox, or the entropy crisis, associated with the glass transition? (2p)
- c) What general properties of glasses are unique and useful from an application point of view? (2p)
- d) Sketch the pair distribution function, g(r), of a glass and a crystal built up of the same coordinating structure below, with $r_1=1.4$ Å and $\theta=135^\circ$. (2p)

- 2. a) Derive the limits for formation of spherical and cylindrical micelles respectively of amphiphilic molecules in terms of characteristics of the molecule. (4p)
- b) What is the driving force behind the formation of infinite sheets of bilayers of amphiphilic molecules? Give a motivation to your answer! (2p)
- d) Sketch the distributions of aggregate sizes (Volume fraction in aggregate X_M vs. aggregation number N). Explain the different behaviours. (4p)

- 3. a) What mechanisms can be used to tune the interactions in a colloidal suspension? Discuss the origin of these mechanisms. (2p)
- b) Discuss the dynamics of a colloidal suspension in the limits $Pe \ll 1$ and $Pe \gg 1$ where Pe is the Peclet number. (4p)
- c) In the figure below the energy, E, as a function of separation, S, is given for two colloidal particles for a range of salt concentrations.
 - Which are the two main contributions building up this curve?
 - Sketch the behaviour of each contribution!
 - Why is the change in salt concentration reducing the maximum energy barrier (discuss this in term of parameters given in the figure)? (4)

Ì

- 4. a) Explain the three fundamental deformations of a liquid crystal: splay, twist and bend. (3p)
- b) What are the basic components of a liquid crystal display? (4)
- c) Describe the basic physical principles in action in a liquid crystal display. (3)

5. An entangled melt of a linear polymer shows viscoelastic behavior. The zero shear viscosity η_0 depends on the degree of polymerisation (N) and the temperature (in Kelvin) (T) according to:

$$\eta_0 = 3.68 \times 10^{-3} \exp\left(\frac{1404}{T - 128}\right) N^{3.4} \text{ Pa s.}$$

The statistical step length is a=0.65 nm.

The plateau value of the shear modulus 1.15×10^6 Pa.

The relative molecular mass of the monomer unit is 54 g mol⁻¹.

- a) Explain why the viscosity has this functional form. (4)
- b) *Estimate* the self-diffusion coefficient, D_{self}, at *T*=298 K of the polymer if the relative molecular mass is 100000 g mol⁻¹. (6)
- c) Imagine that the degree of polymerisation was doubled. How would that affect the plateau modulus value of the shear modulus? (2)
- 6. The mixing of two molecular liquids (A and B) can be described by the regular solution model. At room temperature the interaction parameter is $\chi=3$.
 - a) The liquids are mixed and thoroughly stirred in a proportion ϕ_a that corresponds to a <u>metastable</u> composition. Given that you stop stirring and wait a long time, what will happen to the binary mixture? Please give a qualitative answer. (3)
 - b) The temperature is thereafter decreased which results in an increase of the interaction parameter. What is the effect on the phase/phases in the binary mixture? (3)
- 7. a) Sketch how the effective viscosity depends on the strain rate for a
 - Newtonian fluid
 - shear thickening fluid
 - shear thinning fluid.

Also, give one example each of these (3)

b) Imagine that you apply a constant shear to a viscoelastic material at time t=0. Make a diagram with shear strain on the y-axis and time on the x-axis and sketch the shear strain as a function of time. Can you indicate where you can find the instantaneous modulus (the elastic response for very short times) and the characteristic relaxation time? (3)

