
W
IT

H
ANSW

ER
S!!

!Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT392
11 March 2024

Exam supervisor: G. Schneider (gersch@chalmers.se, 072 974 49 64)
(Exam set by G. Schneider, based on the course given Jan-Mar 2024)

Material permitted during the exam (hjälpmedel):
Two textbooks; four sheets of A4 paper with notes (single or double-sided);

English dictionary (no smart phones allowed).

Grading: You can score a maximum of 70 points. Exam grades are: be-
tween 28–41 (3), between 42–55 (4), 56 or more (5).

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows: between 40–59 (3),
between 60-79 (4), 80 or more (5).

The exam results will be available in Ladok within 15 working days after
the exam’s date.

Instructions and rules:

• Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
receive no points!

• Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

• Answer each question on a new page. Glance through the whole paper
first; five questions, numbered Q1 through Q5. Do not spend more
time on any question or part than justified by the points it carries.

• Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.

1

W
IT

H
ANSW

ER
S!!

!Q1 (19p). In what follows you will get 6 assertions concerning locks, semaphores
and other synchronisation algorithms. For each assertion, you need to
say whether it is correct (true) or not (false). You need to justify
your answer in each case (an answer without a justification will not be
granted full points).

1 If you do not use a try {...} finally {...} after acquiring a
lock in Java, there is a risk of getting other processes to starve.
(2p)
Answer: True. Starvation may happen if the process acquiring the
lock raises an exception in the critical section (thus never releasing
the lock and making all the other process waiting for the lock to
starve).

2 The pseudocode of the program shown in Fig. 1 guarantees mu-
tual exclusion, it is deadlock-free and it is starvation-free. If you
answer true, then explain how the semaphore guarantees all those
properties. If you answer false, explain which of the three proper-
ties are violated and why (you should also provide the right code
that guarantees the three properties). (4p)
Answer: False. It is deadlock-free and starvation-free (it is never
the case that both get stuck because they cannot execute sem.down()),
but it is not mutual exclusive. Indeed, since the semaphore is ini-
tialised to 2 then both threads can access the critical section at the
same time. The right code is to initialise the semaphore to 1.

3 In the correct version of the pseudocode of the program shown in
Fig. 1, the semaphore could be replaced by a lock. If you answer
true, then explain how this is done (provide the replacements to
be done in the program). If you answer false, explain why this
cannot be done. NOTE: Your answer should be based on the
correct version of the program, meaning that if you answered true
in the previous question then you should use the original program;
if you answered false then you should use your corrected version.
(3p)
Answer: True. A semaphore with capacity 1 used in the way
it is used in the correct version of the program acts as a lock.
The replacements to be done (in the correct coce) are: a) replace
sem.down() by lock(); b) replace sem.up() by unlock().

4 The pseudocode of the program shown in Fig. 2 is a solution to
the barrier synchronisation problem for 2 threads. If you answer
true, then explain how the semaphores guarantees that the code
acts as a barrier. If you answer false, explain what is wrong and
provide a correct solution (you may write the new code or simply
say which parts need to be corrected and how). (4p)

2

W
IT

H
ANSW

ER
S!!

!int counter; Semaphore sem = new Semaphore(2);

thread t thread u
int c,d; int c;

1 sem.down();

2 d = counter - 1;

3 c = d * 2;

4 counter = c + d + 1;

5 sem.up();

6sem.down();

7c = counter + 1;

8counter = c - 1;

9sem.up();

Figure 1: Q1-2: Pseudocode of program someCounting.

Answer: False. The program does not act as a barrier as each
thread can execute both up() and down() without needing to wait
for the other. The problem is with the initialisation of the semaphores.
The correct solution would be to initialise both semaphores to 0.

5 Fig. 3 shows an attempt to solve the mutual exclusion problem
without using locks or semaphores (only using atomic reads and
writes). Is the code correct? (Does it satisfy mutual exclusion?)
If yes, explain how this is achieved. If not, explain what is the
problem and hint to a solution (you don’t need to give a new
(corrected) code; simply stated what the problem is and sketch a
solution). (4p)
Answer: False. The code does not satisfy mutual exclusion.The
code is a rewritten version of one presented in lecture 3 slide 21
(first failed attempt towards Peterson’s algorithm): enter has been
replaced by goin and the await instruction in the pseudocode pre-
sented in the lecture has been replaced by the (inner) while loop.
The problem is explained in Lecture 3 slide 22: “The problem
seems to be that await is executed before setting enter, so one
thread may proceed ignoring that the other thread is also proceed-
ing.” One correct solution is Peterson’s algorithm.

6 Peterson’s algorithm is a solution to the mutual exclusion problem
by using test-and-set operations, and it only works for 2 threads.
(2p)
Answer: False. Peterson’s algorithm is a solution to the mutual
exclusion problem based on atomic reads and writes, and it can be
generalised to more than 2 threads.

3

W
IT

H
ANSW

ER
S!!

!
Semaphore go0 = new Semaphore(1); Semaphore go1 = new Semaphore(1)};

thread t0 thread t1

1 // code before barrier

2 go0.up();

3 go1.down();

4 // code after barrier

6// code before barrier

7go1.up();

8go0.down();

9// code after barrier

Figure 2: Q1-4: Pseudocode of program Barrier.

boolean [] goin = {false, false};

thread t0 thread t1

1 while (true) {

2 // entry protocol:

3 while (goin[1]) { };

4 goin[0] = true;

5 critical sect { ... }

6 // exit protocol:

7 goin[0] = false;

8 }

6while (true) {

7// entry protocol:

8while (goin[0]) { };

9goin[1] = true;

10critical sect { ... }

11// exit protocol:

12goin[1] = false;

Figure 3: Q1-5: Pseudocode of program Mutual exclusion with only

atomic reads and writes.

4

W
IT

H
ANSW

ER
S!!

!Q2 (12p). In what follows you have 4 subquestions (Parts a to d) concerning
the dining philosophers. Each part a multiple-choice question. The
grading for each question is as follows:

• For a right answer you will get 3 points;
• If you do not answer the question, you will get 0 points;
• If you answer wrongly, you will get -1 (a negative point).

The total amount of points will be done summing all the points for
each part. So, if you answer correctly Part a, incorrectly Part b, and
do not answer any of the rest, you will get 2 points (3 points for Part
a minus 1 point for Part b, and 0 for the rest). Note that no negative
points for the whole question Q2 will be given (the minimum number
of points you may get for the whole question is 0). That is, if you do
answer wrongly in each part, you will not get -5 but 0.

Here is an implementation of a protocol for the dining philosophers
problem. There are n philosophers and n forks that are implemented
by locks. Every philosopher has an identifier in the range 1, . . . , n,
and the left_fork of philosopher i is fork i and the right_fork of
philosopher i is fork (i mod n) + 1.

entry() {

left_fork.acquire(); // pick up left fork

right_fork.acquire();// pick up right fork

}

critical section { eat(); }

exit() {

left_fork.release(); // release left fork

right_fork.release();// release right fork

}

(Part a). (3p)

The four necessary conditions for a deadlock are:

1 Mutual exclusion: threads may have exclusive access to shared
resources.

2 Hold and wait: a thread may request one resource while holding
another one.

3 No preemption: resources cannot forcibly be released from threads
that hold them.

4 Circular wait: two or more threads form a circular chain where
each thread waits for a resource that the next thread in the chain
is holding.

Which one of the following assertions is true on the above implemen-
tation of entry()?

5

W
IT

H
ANSW

ER
S!!

!a) The implementation satisfies mutual exclusion only.

b) The implementation satisfies all four necessary conditions.

c) The implementation satisfies no preemption and circular wait, but
not the other conditions.

d) The implementation does not satisfy mutual exclusion.

e) None of the conditions are satisfied.

Answer: Option b:

• Mutual exclusion - each lock is held by at most one philosopher at
a time.

• Hold and Wait - each philosopher requires two forks to eat. They
take one and try to acquire the second.

• No preemption - the only way to release the locks is by executing
the exit protocol.

• Circular wait - in a scenario where all philosophers reach for their
left fork one by one we have the all philosophers are waiting for a
resource that the next thread in the chain is holding.

(Part b). (3p)

See below a variant of the entry() protocol for a solution to the dining
philosophers problem which uses one additional global lock. Assume
that the critical section and exit protocol are as before (as well as
the eat() and release() functions):

entry() {

global_lock.acquire();

left_fork.acquire(); // pick up left fork

right_fork.acquire();// pick up right fork

global_lock.release();

}

Which of the following assertions is true on this implementation of
entry()? (More than one option might be true.)

a) The implementation ensures that circular waiting do not occur.
b) Adding just one global lock is not enough to guarantee deadlock-

freedom, even if the locks are fair.
c) Adding the global lock may introduce starvation, even if all locks

are fair.
d) The implementation guarantees deadlock-freedom provided all locks

are fair and philosophers eat and release fairly.

6

WI
TH

AN
SW
ER
S!
!!

e) The new entry() protocol is incorrect since a philosopher may not
be able to pick up both forks to eat.

Answer: Options a and d are correct. Option a since the global lock
ensures that no two philosophers try to acquire locks at the same time.
Furthermore, the only way to release the main lock is when acquiring
both forks. If some process is locking the main lock and waiting for
one of their forks, by implication, the philosopher it is waiting for is
not waiting for anything because it released the main lock. Option d
because of the same reasons given for option a.

(Part c). (3p)

Which ones of the following assertions are true about the dining philoso-
phers problem and solution? (More than one option may be true.)

a) The dining philosophers problem is a theoretical exercise in concur-
rency, without any connection to real problems.

b) Any working solution (i.e., guaranteeing mutual exclusion, deadlock-
freedom and starvation-freedom) to the dining philosophers problem
must be implemented using some kind of synchronisation mecha-
nism (locks, semaphores, etc.).

c) A producer-consumer problem can be reduced to a dining philoso-
pher problem.

d) There is no solution to the dinner philosopher problem for more
than 10 philosophers.

e) A solution to the dining philosopher problem could be simply to
ensure that just one philosopher at a time eats, while the others
think, and then take turn to eat. This would work but it will be
essentially a sequential algorithm, not exploiting the possibilities of
concurrency.

Answer: Options b and e are true.

(Part d). (3p)

See below an Erlang implementation of fork and the functions get_fork
and put_fork intended to be a (partial) solution to the dining philoso-
phers problem. Remember that each fork corresponds to a process
initially running fork() and each philosopher corresponds to a pro-
cess that alternates between calling get_fork() twice and put_fork()

twice.

% a fork not held by anyone

7

W
IT

H
ANSW

ER
S!!

!fork() ->

receive

{get, From, Ref} -> From ! {ack, Ref},

fork(From) % fork held

end.

% a fork held by Owner

fork(Owner) ->

receive

{put, Owner, _Ref} -> fork() % fork not held

end.

get_fork(Fork) ->

Ref = make_ref(),

Fork ! {get, self(), Ref},

receive {ack, Ref} -> ack end.

put_fork(Fork) ->

Ref = make_ref(),

Fork ! {put, Ref}.

Which ones of the following assertions are true about the above imple-
mentation? (More than one option may be true.)

a) The fork() implementation is wrong since it should not wait for
the message {get,From,Ref}.

b) The get_fork function is incorrect as the following line of code
receive {ack,Ref} should be replaced by this one: receive {ack,self(),Ref}.

c) The put_fork function is incorrect as the following line of code
Fork ! {put,Ref} should be replaced by this one: Fork ! {put,self(),Ref}.

d) All the functions shown in the implementation are correct.
e) The lines Ref = make_ref() are not needed in get_fork and put_fork.

Answer: Only option c is true: the corresponding line in the code is in-
deed incorrect and it should be replaced by Fork ! {put, self(), Ref}

(which matches the receive instructions in fork()).

8

W
IT

H
ANSW

ER
S!!

!Q3 (15p). In what follows you have 5 subquestions (Parts a to e) concern-
ing different topics seen in the course. Each part a multiple-choice
question. The grading for each question is as follows:

• For a right answer you will get 3 points;
• If you do not answer the question, you will get 0 points;
• If you answer wrongly, you will get -1 (a negative point).

The total amount of points will be done summing all the points for
each part. So, if you answer correctly Part a, incorrectly Part b, and
do not answer any of the rest, you will get 2 points (3 points for Part
a minus 1 point for Part b, and 0 for the rest). Note that no negative
points for the whole question Q3 will be given (the minimum number
of points you may get for the whole question is 0). That is, if you do
answer wrongly in each part, you will not get -5 but 0.

(Part a). (3p)

This question is about different signalling policies in monitors. In Fig. 4
you see the pseudocode of a monitor program PrintCnt that prints the
value of counter. Threads may execute inc() and print() in every
order and as many times as they want. What are the possible printed
values when calling method print()?

monitor class PrintCnt {

private int counter = 0;

private Condition isOne = new Condition();

public void print() {

while (counter != 1) isOne.wait();

System.out.println(counter);

}

public void inc() {

counter += 1;

if (counter == 1) isOne.signal();

}

}

Figure 4: Q3 - Part a: Pseudocode of program PrintCnt.

a) It never prints “1” if the monitor uses a signal and continue discipline

b) It always prints “1” if the monitor uses a signal and continue disci-
pline

c) It always blocks if the monitor uses a signal and wait discipline

9

W
IT

H
ANSW

ER
S!!

!d) It may may block forever or it may print “1”

e) It may print any number equal or bigger than “1”

Answer: Option d). Reason: the only way to print is by not executing
the while when the counter is 1 in which case it will print 1. The other
possibility is that some of the threads waiting in the wait condition
wakes up and then proceed to print, but this would only happen when a
signal is executed, which may only happen once (given the condition
counter==1). Thus, all the process waiting to wake up will be blocked
as the signalling will happen only once.

(Part b). (3p)

Fig. 5 shows four implementations of the function up() of a semaphore
using notify() and the internal counter of the semaphore, count. The
implementation of down() is shown in Fig. 6. Which one of the four
implementations of up() does NOT work?

a) up1()

b) up2()

c) up3()

d) up4()

Figure 5: Q3 - Part b: Four semaphore implementations of up().

Figure 6: Q3 - Part a: Semaphore implementation of down().

10

W
IT

H
ANSW

ER
S!!

!Answer: Option c). Reason: up3() does not work because the notify()
might wake a thread that will go ahead, take the lock, see that count
is 0 and then go back to waiting. The thread calling up3() will then
increase the counter but the waiting thread will not be woken up leading
to a deadlock.

(Part c). (3p)

In Fig. 7 you can see a parallel version of a program that computes the
multiplication of numbers from m to n.

Note that the function has two special cases: it gives 1 if m > n, and
it gives m when m == n).

Also note that the division operation (“/”) truncates the decimal part
(e.g., 1/2 gives 0).

class ParallelMul extends RecursiveTask<Integer> {

int m, n;

protected Integer compute() {

if (m == n) return m;

if (m > n) return 1;

if (m < n) {

int mid = m + (n-m)/2; // mid point

ParallelMul lower = new ParallelMul(m, mid);

ParallelMul upper = new ParallelMul(mid+1, n);

lower.fork();

upper.fork();

return lower.join() * upper.join();

}

}

}

Figure 7: Q3 - Part c: Java program ParallelMul.

The program is run to compute the product of integers from m = 1 to
n = k (with k > 1).

What is the maximal number of cores that would run this code effec-
tively? That is, adding more cores will not speed up the computation.

NOTE: We are assuming an idealised case where we have one thread
per core without special techniques involved, and that we ignore how
Java’s VM (or other languages and underlying multithreading tech-
nologies implementations) behaves. That is, the question is a theoret-
ical investigation of the problem, no making any further assumptions
on hardware optimisations.

11

W
IT

H
ANSW

ER
S!!

!a) 1, there practically is no parallelism
b) 2k (that is, 2 to the power of k)
c) k! (that is, the factorial of k)
d) k2 (that is, k ∗ k)
e) k

Answer: Option e). Reason: the program forks till reaching the base
case in which case there are k parallel threads that will then be joined
performing the multiplication. All other threads are waiting.

(Part d). (3p)

According to Amdahl’s law, if the fraction p of a program can be
parallelised, then, the maximum speedup that can be achieved by n
processes is 1

(1−p)+ p
n
. You have a program where 10% of the program

must be done sequentially and 90% of the program can be parallelised.
What is the maximum speedup that you can achieve given unlimited
resources (i.e., increase the number of processes as you wish).

a) One cannot achieve speedup at all.
b) With a very large number of processes, one can achieve any wanted

speedup.
c) The program can run more than 10 times faster.
d) The program cannot run more than 10 times faster.

Answer: Option d). Reason: The denominator is at least 1/10. So the
fraction is always smaller than 10.

(Part e). (3p)

Which of the following programs does not have data races? In all cases,
t1 and t2 are threads executing at the same time sharing the variables
at the top. The programs are numbered 1, 2, and 3 from left to right.

a) Program 2.
b) Program 3.
c) Program 1 and program 2.
d) Program 1 and program 3.

Answer: Option d). Reason: Program 1 the write are never accessible.
So it cannot have a data race. Program 2 has a write in t2 that is not
ordered with respect to the writes in t1. Program 3 As flag is volatile,

12

W
IT

H
ANSW

ER
S!!

!
Figure 8: Q3 - Part e: Programs with or without data races.

an access to the if in t1 happens only after the flag is set to true in
t2. This means that the increment in t1 happens after the increment
in t2.

13

W
IT

H
ANSW

ER
S!!

!Q4 (12p). In what follows you have 4 subquestions (Parts a to d) concerning
Erlang processes (client-server architecture, process communication,
etc.). Each part a multiple-choice question. The grading for each
question is as follows:

• For a right answer you will get 3 points;
• If you do not answer the question, you will get 0 points;
• If you answer wrongly, you will get -1 (a negative point).

The total amount of points will be done summing all the points for
each part. So, if you answer correctly Part a, incorrectly Part b, and
do not answer any of the rest, you will get 2 points (3 points for Part
a minus 1 point for Part b, and 0 for the rest). Note that no negative
points for the whole question Q4 will be given (the minimum number
of points you may get for the whole question is 0). That is, if you do
answer wrongly in each part, you will not get -5 but 0.

(Part a) (3p).

An Erlang implementation (following the client/server architecture) is
shown in Fig. 9. Below follows 4 statements: which one is true?

1 -module(barrier).

2 -export([init/1,wait/1]).

3
4 init(Expected) ->

5 spawn(fun () -> barrier(0, Expected, []) end).

6
7 wait(Barrier) ->

8 Ref = make_ref(),

9 Barrier ! {Arrived, self(), Ref},

10 receive {continue, Ref} -> goAhead end.

11
12 barrier(Arrived, Expected, PidRefs)

13 when Arrived =:= Expected ->

14 [To ! {continue, Ref} || {To, Ref} <- PidRefs],

15 barrier(0, Expected, []);

16 barrier(Arrived, Expected, PidRefs) ->

17 receive

18 {Arrived, From, Ref} ->

19 barrier(Arrived+1, Expected, [{From, Ref}|PidRefs])

20 end.

Figure 9: Q4-(a): An Erlang implementation of a barrier.

14

W
IT

H
ANSW

ER
S!!

!a) The code is correct.

b) The code is not correct. There is one error: a when condition is
missing in one of the cases defining barrier (after line 16).

c) The code is not correct. There is one error: the when condition (line
13) is not correct.

d) The code is not correct. There are two errors, both related to how
Erlang treats variables and atoms.

Answer: The correct option is (d): There are two errors: in the re-
ception of the messages, the message should match an atom as first
element and not a variable (it should be {arrived, From, Ref} and
not {Arrived, From, Ref}; similarly in the wait function it should be
{arrived, self(), Ref} and not {Arrived, self(), Ref}).

(Part b) (3p).

Below follows 4 statements about the barrier implementation shown in
Fig. 9. Only one of the statements is true, which one is it?

a) The first part of the definition of the barrier function (lines 12
till 15) will only be executed (pattern matched) when the expected
number of processes has arrived to the barrier, in which case a
message will be sent to all the processes so they can pass the barrier.

b) The implementation shown in the figure is the server implementa-
tion of a non-reusable barrier.

c) Line 2 of the code -export([init/1,wait/1]) is not really needed
as no process needs to call the functions init and wait.

d) In order for the pattern matching to work, we should add a when

condition after line 16 (second part of the barrier definition).

Answer: Option (a): the when condition (line 13) exactly matches that
the function should be executed if the number of arrived processes is
as expected, and the list comprehension in line 14 will indeed send a
message so processes can continue.

(Part c) (3p).

Given the two Erlang process of Fig. 10: what does process Q print?

a) Process q’s pid (process identifier).

b) self(2).

15

W
IT

H
ANSW

ER
S!!

!c) A list with 2 elements.
d) The number 2.
e) The number 0.
f) Nothing.

.

process P process Q

1 p() -> % Q is q’s pid

2 self() ! self(),

3 receive self() ->

4 Q ! {self(), fun(X) -> X-2 end}

5 end.

6q() ->

7receive {Q, G} ->

8io:format("~p", [G(2)])

9end.

Figure 10: Q4-(c): Erlang processes.

Answer: Option (e): Process Q receives a message with two parame-
ters, process p’s id (P) and a function that decrements the parameter
by 2. The function is received as “G” by process q, and then prints the
application of the function to the parameter 2 (thus giving 2-2).

(Part d) (3p).

It follows 6 different assertions concerning Erlang processes. Only one
of them is false, which one?

a) Messages sent to a server remain in the mailbox indefinitely un-
less there is at least one concrete receiver instruction that pattern
matches the message.

b) A when clause can only be used in the first occurrence of a function
definition, otherwise the process will block if it does not pattern
match.

c) When writing a generic server if the computation of a handling
function on the input fails the result may create an exception. The
exception needs to be explicitly handled in order to notify the client
that an error has occurred. To handle any possible exception, you
can use Erlang’s catch(E) built-in function.

d) Erlang supports functionalities to implement client-server architec-
tures as well as other kind of process interactions based on asyn-
chronous communication.

16

W
IT

H
ANSW

ER
S!!

!e) By defining handling functions in a suitable manner, it is possible to
implement a “hot upgrading” in Erlang. (Note: a “hot upgrading”
is when you can update a functionality without needing to stop the
execution of the process.)

f) Implementing a fair solution in Erlang to the readers-writers prob-
lem requires a hierarchical solution forcing existing readers to finish
and not accepting new readers as soon as a writer arrives.

Answer: Option (b): It is false since the when clause can be used in
any part of the function definition (not necessarily the first one), and
has nothing to do with blocking when no pattern matching happens.

17

W
IT

H
ANSW

ER
S!!

!Q5 (12p). Your project manager has asked you to implement a queue us-
ing a linked list as the underlying data structure. You look at the
implementation of the fine-grained locking version of a parallel linked
set (code shown in Figures 11 and 12) for inspiration, and you want
to refactor it. In particular, you were asked to implement a bounded
queue (instead of a set). Your task is to write a class Queue<T>.

Background: A queue is a FIFO (First In, First Out) data structure
with the following operations:

dequeue(Q): It retrieves (removes) an element of the queue. The el-
ements are popped (dequeued) in the same order in which they are
pushed (enqueued). If the queue is empty, then it is said to be an Un-
derflow condition and no element is given; otherwise it gives as result
the dequeued element.

enqueue(Q,E): It adds element E to the queue Q. If the queue is full,
then it is said to be an Overflow condition and no element can be
added. It gives as result the updated new queue with the new element
added, or the very same queue in case of an Overflow condition.

front(Q): It gets the front element of the queue Q without removing it.

last(Q): It gets the last element of the queue Q without removing it.

A queue is said to be bounded when there is a limit on the number of
elements it might contain; we call the maximum number of elements
the queue may contain its bound (or limit).

A queue is full when it has as many elements as its limit. Note that
you can only enqueue a new element when the queue is not full).

For bounded queues, we have the following new operation:

bound(Q): It gives the bound of the queue Q (the maximum number of
elements the queue may contain).

In what follows you will get 12 assertions concerning the implementa-
tion of a class Queue<T> that allows for parallel access. The assertions
are both general statements about such an implementation and also
about the possibility of reusing the code for sets (the code shown in
Figures 11 and 12): refactoring FineSet<T> into a new class Queue<T>.

For each assertion, you need to state whether it is correct or not. You
need to justify your answer in each case. NOTE: An answer without
a justification will not be granted full points.

1 The bound (limit) of the queue is not needed as we always know
how many elements the queue has.
Answer: False: the bound has nothing to do with the current length
of a queue (it is the maximum number of elements the queue may
have, and you cannot know that number in advance).

18

W
IT

H
ANSW

ER
S!!

!2 The queue data structure should have a key in order to add the
elements in the right position according to the key.
Answer: False: You don’t need to use the key as the elements
don’t need to be added in order according to the key. The keys are
used for efficiency reasons.

3 The enqueue method is essentially the same as the add method
(just changing names). In other words, you can use add as it is
to implement enqueue.
Answer: False: You need to make a lot of changes as you add
elements only at one end of the queue (and not in a specific part of
the structure). In particular, you need to check whether the queue
is not full before adding the element (as the queue is bounded).

4 The dequeue method is different from the remove among other
things because in a queue we don’t need to remove elements from
the middle of the (linked) data structure.
Answer: True: The dequeue method only removes elements from
one end of the data structure, while the set remove operation may
remove elements from the middle of the (linked) data structure.

5 A class Queue<T> that implements a linked queue that supports
parallel access requires the use of locks (in other words, it is im-
possible to program a linked queue that supports parallel access
without using locks).
Answer: False: You don’t require locks, as shown by the imple-
mentation proposed in Lecture 11 using CAS.

6 The implementation of a class Queue<T> allowing for parallel ac-
cess cannot be implemented with semaphores.
Answer: False: You can, as semaphores are more general than
locks and you can implement a parallel queue with locks.

7 Implementing a Queue<T> class by refactoring the FineSet<T> class
is a good idea since there are not too many changes to be made.
Answer: True: you just need to wrap the methods and the imple-
mentation could be very simple (if you want to use keys and just
reimplement the way you insert and remove elements, adding a
check for the bound when needed).

8 It is possible to implement a class Queue<T> allowing for parallel
access without using CAS (compare-and-set) operation
Answer: True: You can, as shown in Lecture 11.

9 The bound method requires the use of a lock (or any other synchro-
nisation mechanism) as it might create inconsistency if accessed
by more than one thread.

19

W
IT

H
ANSW

ER
S!!

!Answer: False: the bound just returns a value that is not supposed
to be updated anywhere (and thus it doesn’t require to be protected
with any sync mechanism).

10 Adding (enqueuing) an element on a parallel queue is not prob-
lematic in general if the list has at most three elements.
Answer: False: Adding elements on any parallel data structure
might be problematic is there are more than one thread operating
on it, independently of the number of elements.

11 As for FineSet<T>, any implementation of a class Queue<T> allow-
ing for parallel access might get an inconsistency if one thread
tries to add (enqueue) an element while another tries to remove
(dequeue) it.
Answer: True. This is the case for any data structure where
threads may simultaneously add and remove elements (as the local
view of the pointers may differ).

12 The implementation of a lock-free queue data structure (a class
Queue<T> without using locks) presented in Lecture 11 is an un-
conditionally correct way to implement a parallel queue in any
language.
Answer: False: The lock-free implementation given in Lecture
11 is not unconditionally correct since requires garbage collection
(slide 17). You may also argue that the answer is false since the
proposed solution is not “a paradigm of how to implement a paral-
lel queue in every object oriented language” for two reasons: first,
it might depend on the primitive constructs the language provides
to ensure atomicity, second you may use locks to implement a
parallel queue.

20

W
IT

H
ANSW

ER
S!!

!1 package sets;

2
3 public class FineSet<T> extends SequentialSet<T>

4 {

5 public FineSet() {

6 super();

7 }

8
9 @Override

10 protected Position<T> find(Node<T> start, int key) {

11 Node<T> pred, curr;

12 pred = start;

13 pred.lock();

14 curr = start.next();

15 curr.lock();

16 while (curr.key() < key) {

17 pred.unlock();

18 pred = curr;

19 curr = curr.next();

20 curr.lock();

21 }

22 return new Position<T>(pred, curr);

23 }

24
25 @Override

26 public boolean add(T item) {

27 Node<T> node = newNode(item);

28 Node<T> pred = null, curr = null;

29 try {

30 Position<T> where = find(head, node.key());

31 pred = where.pred;

32 curr = where.curr;

33 return rawAdd(pred, curr, node);

34 } finally {

35 pred.unlock();

36 curr.unlock();

37 }

38 }

39
40 \\ code continues in Figure 12.

Figure 11: Q5: A “fine-grained locking” implementation of parallel linked
sets.

21

W
IT

H
ANSW

ER
S!!

!1 @Override

2 public boolean remove(T item) {

3 int key = item.hashCode();

4 Node<T> pred = null, curr = null;

5 try {

6 Position<T> where = find(head, key);

7 pred = where.pred;

8 curr = where.curr;

9 return rawRemove(pred, curr, key);

10 } finally {

11 pred.unlock();

12 curr.unlock();

13 }

14 }

15
16 @Override

17 public boolean has(T item) {

18 int key = item.hashCode();

19 Node<T> pred = null, curr = null;

20 try {

21 Position<T> where = find(head, key);

22 pred = where.pred;

23 curr = where.curr;

24 return rawHas(curr, key);

25 } finally {

26 pred.unlock();

27 curr.unlock();

28 }

29 }

30
31 @Override

32 protected Node<T> newNode(T item) {

33 return new LockableNode<>(item);

34 }

35
36 @Override

37 protected Node<T> newNode(int key) {

38 return new LockableNode<>(key);

39 }

40 }

Figure 12: Q5: A “fine-grained locking” implementation of parallel linked
sets. [CONT.]

22

