
Chalmers | Göteborgs Universitet

Concurrent Programming TDA384/DIT392
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Exam supervisor: G. Schneider (gersch@chalmers.se, 072 974 49 64)

(Exam set by G. Schneider, based on the course given Jan-Mar 2023)

Material permitted during the exam (hjälpmedel):
Two textbooks; four sheets of A4 paper with notes (single or double-sided);

English dictionary (no smart phones allowed).

Grading: You can score a maximum of 70 points. Exam grades are:

points in exam Grade
28–41 3
42–55 4
56–70 5

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

points in exam + labs Grade
40–59 3
60–79 4

80–100 5

The exam results will be available in Ladok within 15 working days after
the exam’s date.

Instructions and rules:

• Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
receive no points!

• Justify your answers, and clearly state any assumptions that your so-
lutions may depend on for correctness.

• Answer each question on a new page. Glance through the whole paper
first; five questions, numbered Q1 through Q5. Do not spend more
time on any question or part than justified by the points it carries.

• Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.
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Q1 (18p). This question is concerned with Peterson’s algorithm (as seen in
Lecture 3).

(Part a). (8p)

Fig. 1 shows Peterson’s algorithm for 2 threads.

Figure 1: Q1:Peterson’s Algorithm for 2 threads.

Would the algorithm be correct if we make the simultaneous replace-
ments below?

• Line 3 is replaced by enter[1] = true

• Line 12 is replaced by enter[0] = true

• Line 8 is replaced by enter[1] = false

• Line 17 is replaced by enter[0] = false

Justify your answer. If the answer is NO, explain what would be the
new behaviour): give a concrete execution trace showing why this not
the case. If the answer is YES, explain it.

ANSWER: Yes, it still guarantees mutual exclusion, deadlock freedom
and starvation freedom. The only change is that instead of saying “I
want to enter into the critical section” (by setting enter[i]= true for
i equal 0 or 1 depending on the thread), it says “You want to enter into
the critical section” (by inverting the value of i).

To see that it guarantees deadlock freedom see that the await condition
means that at any moment one of the threads (and only one) will be
able to enter the critical section since yield can be 0 or 1 but not both
at the same time (and it will be 0 or 1 in all iterations). Note that
there is mutual exclusion since there is no way to have yield=0 and
enter[0]= false (similarly, not possible that yield=1 and enter[1]=

false). So, at any moment only one of the threads would be able to go
in.
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(Part b). (10p)

Does the generalised Peterson’s algorithm (for n threads, shown in
Fig. 2) when instantiated with n = 2 behaves the same as Peterson’s
algorithm for 2 threads? If so, set n = 2 in the generalised algorithm
and explain how you get the original algorithm for 2 threads. You
need to justify your answer (do not just give the instantiation of the
algorithm).

Figure 2: Q1:Generalised Peterson’s Algorithm (for n threads).

ANSWER: Yes, it is the same. By setting n = 2, note that the loop
becomes redundant since i can only take the value 1, x can be only
0 or 1, and the “levels” now can only be 0 or 1, level 1 (i = 1) is
true and level 0 is false The await statement becomes (for thread 0)
await (enter[1] < 1 || yield[1] != 0) which is equivalent to await

(enter[1] = false || yield[1] != 0) (this is because t in the ∀t! = x
can only take one value: 0 if x = 1 and 1 if x = 0).
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Q2 (18p). This question is concerned with a car production line in which
some robots produce brake pedals and put them on a circular belt.
These pedals are taken by other robots along the production line and
pass it on to be assembled in the car. Brake producer robots are called
makers and the ones taking the brakes from the belt are called users.

The belt has a capacity Max and it is not possible to add more pedals if
the belt is full. (Max is strictly positive, i.e., Max>0) Similarly, no user
can take a pedal from the belt if this is empty.

You can assume that there are m makers and n users (n,m > 0).

A programmer who did not took the Principles of Concurrent Program-
ming course was in charge of writing a program to handle the above
with the explicit instruction that the program should be deadlock-free,
starvation-free and it should work for an arbitrary number of makers
and users. The programmer wrote the code in Fig. 3 defining a class
Belt and two methods for putting pedals in the belt (put) and taking
pedals from the belt (take).

(belt is defined as: Belt⟨pedal⟩ belt)

Figure 3: Q2: Car production code for makers and users.

Besides the shown code, there is a main program that creates m threads
for makers and n threads for users. Each maker keeps creating pedals
and putting them into the belt by calling belt.put(pedal) where users
keep taking them from the belt by calling pedal = belt.take() and
then passing them to the rest of the production line.

In what follows there are a number of assertions and questions. Please
answer each one of them and justify your answer. A partially correct
answer will not be given full points.
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1 Is the following statement true or false: The program is correct
but will only work if you have exactly the same amount of makers
and users. Justify your answer. (2p)

2 Is the program deadlock-free? If it is, explain why this is the case.
If not, explain which parts of the code are wrong, correct it and
give a concrete execution trace showing the deadlock. (5p)

3 Is the following statement true or false: “Lines 5 and 6 should not
be swapped because it might produce a deadlock”? Justify your
answer. (3p)

4 Is the following statement true or false: “Swapping lines 12 and
13 is OK as the program will not deadlock”? Justify your answer.
(3p)

5 The manager of the programmer claims that the program allows
makers to add more pedals into the belt than its capacity. Is that
true? Justify. (3p)

6 Is the following statement true or false: A correct implementation
of the problem can be done with only one semaphore and one lock.
Justify your answer. (2p)

ANSWER:

1 No. The program is not correct (it will deadlock), and the number
of makers and users does not affect the correctness of the program.

2 No, the program may deadlock: in the take method you should
swap lines 9 and 10. An execution trace showing this is the fol-
lowing:
1) A user start executing the take method and acquires the lock
(line 9) and then keeps waiting in line 10 (as the counter of
nPedals is 0);
2) A maker start executing the put method and after executing
line 2 tries to acquire the lock (line 3);
3) Deadlock: The user holds the lock and is waiting for a maker
to execute nPedals.up(), while the maker is waiting for the user
to release the lock.
(This is an instance of the producer-consumer problem - See Lec-
ture 4 slide 26 for a correct solution.)

3 False: lines 5 and 6 may be swapped without affecting the outcome
(see Lecture 4 slide 26).

4 True: lines 12 and 13 could be swapped (see Lecture 4 slide 26).
5 No: the semaphore nFree is used correctly so it not possible to

have more than Max elements in the belt.
6 No, it’s not correct: you require one lock and at least two semaphores

(one to check the belt is not empty and one to check it is not full).
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Q3 (9p). A programmer has written the program below asserting that it
guarantees mutual-exclusion between two processes. The solution is
based on a compare-and-set (CAS) operation.

boolean turn= false; boolean flaga= false; boolean flagb= false;
p q

while(true) { while(true) {
p1 //NCS (non-critical section) q1 //NCS (non-critical section)
p2: flaga= true; q2: flagb= true;
p3: while(!turn.CAS(false,true) q3: while(!turn.CAS(false,true)

&& flagb) { }; && flaga) { };
p4 //CS (critical section) q4 //CS (critical section)
p5: turn= flaga= false; q5: turn=flagb= false;

} }

For simplicity, we ignore the locations p1 and p4 and similarly q1 and
q4. Process p moves directly from p3 to p5 and from p5 to p2 and sim-
ilarly for q. We treat p5 and q5 as the critical section.

(Part a). (4p)

A full state of the program is of the form (pi, qj , flaga, flagb, turn),
where i and j range over {2, 3, 5}, and flaga, flagb, and turn range
over true and false.

Below you find a partial state transition table for the program above.
Only 8 states are reachable from the initial state (p2, q2, f, f, f).

Your task is to fill in the blank entries in the table.

state new state if p moves new state if q moves
s1 (2, 2, f, f, f) (2, 3, f, t, f) = s2
s2 (2, 3, f, t, f)

s3 (3, 2, t, f, f)

s4 (3, 3, t, t, f) (5, 3, t, t, t) = s7
s5 (2, 5, f, t, t)

s6 (5, 2, t, f, t) (5, 3, t, t, t) = s7
s7 (5, 3, t, t, t)

s8 (3, 5, t, t, t)

ANSWER:
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state new state if p moves new state if q moves
s1 (2, 2, f, f, f) (3, 2, t, f, f) = s3 (2, 3, f, t, f) = s2
s2 (2, 3, f, t, f) (3, 3, t, t, f) = s4 (2, 5, f, t, t) = s5
s3 (3, 2, t, f, f) (5, 2, t, f, t) = s6 (3, 3, t, t, f) = s4
s4 (3, 3, t, t, f) (5, 3, t, t, t) = s7 (3, 5, t, t, t) = s8
s5 (2, 5, f, t, t) (3, 5, t, t, t) = s8 (2, 2, f, f, f) = s1
s6 (5, 2, t, f, t) (2, 2, f, f, f) = s1 (5, 3, t, t, t) = s7
s7 (5, 3, t, t, t) (2, 3, f, t, f) = s2 —
s8 (3, 5, t, t, t) — (3, 2, t, f, f) = s3

(Part b). (2p) Does the protocol maintain mutual exclusion? Justify
your answer.

ANSWER: Yes. At most one of the processes is in location 5 at every
reachable state.

(Part c). (3p) Consider the condition !turn.CAS(false, true)&&flaga

guarding the loop for process q. Does the second conjunct (flaga) plays
any role in the evaluation of the condition? Justify your answer.

ANSWER: No, flaga doesn’t play any role since in all reachable states,
whenever process q is in q3 evaluating this condition and process p is
in location p2 (i.e., flaga is false) it is always the case that the CAS
evaluates to true. (You can also see this in the table: the only states
where q is in position 3 are s2, s4 and s7 and it is clear that the flag
doesn’t play any role in any of the cases.)
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Q4 (15p). The reduce function is a high-order function that can be defined
in Erlang as follows:

reduce(_,A,[]) -> A;

reduce(F,A,[H|T]) -> F(H,reduce(F,A,T)).

We have seen the following parallel implementation of the reduce func-
tion in Lecture 9:

preduce(_, A, []) -> A;

preduce(F, A, [E]) -> F(A, E);

preduce(F, A, List) ->

Mid = length(List) div 2,

{L, R} = lists:split(Mid, List),

Me = self(), % L ++ R =:= Listn

Lp = spawn(fun() -> % on left half

Me ! {self(), preduce(F, A, L)} end),

Rp = spawn(fun() -> % on right half

Me ! {self(), preduce(F, A, R)} end),

% combine results of left, right half

F(receive {Lp, Lr} -> Lr end, receive {Rp, Rr} -> Rr end).

(Part a). (4p)

Apply both reduce and preduce to the list L = [2,4] with initial value
0 for A, where F is the plus/2 function defined as follows:

plus (X,Y) -> X+Y.

That is, write down (“simulate”) the execution of the following calls:
reduce(plus/2,0,[2,4]) and preduce(plus/2,0,[2,4]).

Answer:

reduce(plus/2,0,[2,4])

plus(4,reduce(plus/2,0,[4])
plus(2, plus(4,reduce(plus/2,0,[])))
plus(2, plus(4,0))
plus(2, 4)
6

preduce(plus/2,0,[2,4]) will split the list into 2 and spawn two pro-
cesses on each half, applying the same function to each half (LP will
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be preduce(plus/2,0,[2]) and LR will be preduce(plus/2,0,[4])).
Since both lists have one element, the second base case will be applied,
getting plus(0,2) and plus(0,4).
And now the results are combined, giving 6.

(Part b). (5p)

Does preduce always give the same answer as reduce when applied to
the same function F, element A and list L? If so, explain how preduce is
indeed a correct parallel implementation of reduce. If not, explain why
is not the case and what is required for preduce to be a fully correct
implementation of the original function. In case you answer that both
functions may not compute the same thing, give a concrete example
that shows the difference.

Answer: No. As seen in Lecture 9 slide 23, this parallel version only
works provided the function F is associative and we have that for every
element E of the list the following is true: F(E,A)= F(A,E) = E (A is
the neutral element for operation/function F).

A concrete example that shows the above is for instance if you ap-
ply both reduce and preduce to the plus function with 1 instead of
0 as second argument, as 1 doesn’t satisfy the property that F(A,E) =
E: reduce(plus/2,1,[2,4]) will give 7 while preduce(plus/2,1,[2,4])

will give 8.

(Part c). (6p)

In preduce, why is A used in both sublists calls (left and right)? Wouldn’t
that mean that the function F will apply A on every element of the list
and give a result different from the expected? Justify your answer (you
can use Part a) and b) above as a way to explain your answer.)

Answer: Yes, the statement is in general true: F will apply A on every
element of the list and give a different result than the expected (see
example in answer to Part b). That said, the implementation works if
the following two conditions hold: F is associative and A is the neutral
element for F. So, preduce(plus/2,0,[2,4]) will give the right result
(addition is associative and 0 is the neutral element for the addition),
while preduce(plus/2,1,[2,4]) would give a wrong result as seen in
answer to Part b.

9



Q5 (10p). A solution to concurrently access a list is to use a coarse-locking
method, locking all elements of the list. In lecture 10 we saw that
though this works it is not satisfactory since the access is essentially
sequential, and we gave different alternative approaches. This question
is about fine-grained locking.

Below it follows statements and situations concerning parallel linked
lists implementing sets being accessed by 2 threads t0 and t1. As in
our lecture, we assume that the linked list is sorted by key.

(Part a) (4p) Answer whether the statements below concerning fine-
grained locking are true or false. Justify your answer in each case (an
answer without justification would not be granted full points).

1) In order to guarantee that the concurrent access works well (i.e.,
there are no inconsistencies), it is enough that both threads lock
only their pred pointed node when executing the find method. (2p)

2) If there are too many threads executing the validation process (to
ensure no two threads are accessing the same node at the same
time), the fine-grained locking does not work and inconsistencies
may arise. (2p)

ANSWER:

1) False: the find method is required to lock both the pred and curr
nodes for all accessing threads, otherwise an inconsistency may arise
when one of the threads tries to remove its curr node while the other
thread has already updated its curr pointer, pointing then to a non-
existing node. (See Lecture 10, slide 33.)

2) False: there is no validation process in fine-grained locking as pre-
sented in the lectures (the find function in fine-grained locking locks
both pred and curr and does not need validation. Validation is
needed when find does not use locking (as in the optimistic locking
case).

(Part b) (6p) A programmer has been given the task to implement the
find method for a fine-grained locking solution (without validation) to
access a parallel linked list. The programmer took an existing solution
and slightly modified it, producing the following code:

1 protected Node<T>, Node<T> find(Node<T> start, int key) {

2 Node<T> pred, curr;

3 pred = start; curr = start.next();

4 pred.lock();

5 while (curr.key < key) {
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6 curr.lock();

7 pred.unlock();

8 pred = curr;

9 curr = curr.next();

10 curr.unlock();

11 }

12 return (pred, curr);

13 }

The supervisor is not happy at all with the solution of the programmer
claiming that the code is not correct.

Explain why the solution is wrong and provide a correct version so
the find method can be used as expected in a fine-grained locking
algorithm (with no validation).

ANSWER: The code is incorrect since both pred and curr should be
locked before the loop starts otherwise an inconsistency may arise (e.g.,
another thread might remove the node pointed by curr before the condi-
tion of the while is checked). (We are in a setting without validation.)

Besides, the last sentence of the loop (curr.unlock();) is not correct
since the curr node is not holding a lock (it now points to a new node
and the lock is not acquired yet).

The correct solution is:

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start;

pred.lock(); // lock pred node

curr = start.next();

curr.lock(); // lock curr node

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr;

curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}

We also accept as correct the following solution (as shown in lecture
10, slide 34 — code reproduced below):

protected Node<T>, Node<T> find(Node<T> start, int key) {

Node<T> pred, curr; // predecessor and current node in iteration

pred = start;
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curr = start.next();

pred.lock(); // lock pred node

curr.lock(); // lock curr node

while (curr.key < key) {

pred.unlock(); // unlock pred node

pred = curr;

curr = curr.next(); // move to next node

curr.lock(); // lock next node

} // until curr.key >= key

return (pred, curr); // return position

}
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