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Principles of Concurrent Programming TDA384/DIT391
Wednesday, 9 January 2019

Exam supervisor: Sandro Stucki (sandros@chalmers.se, 076 420 86 39)
(Exam set by K. V. S. Prasad)

Material permitted during the exam (hjälpmedel):
Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

Points in exam Grade Chalmers Grade GU
28–41 3 G
42–55 4 G
56–70 5 VG

Passing the course requires passing the exam and passing the labs. The
overall grade for the course is determined as follows:

Points in exam + labs Grade Chalmers Grade GU
40–59 3 G
60–79 4 G

80–100 5 VG

The exam results will be available in Ladok within 15 working days
after the exam’s date.

Instructions and rules:

• Please write your answers clearly and legibly: unnecessarily compli-
cated solutions will lose points, and answers that cannot be read will
not receive any points!

• Justify your answers, and clearly state any assumptions that your
solutions may depend on for correctness.

• Answer each question on a new page. Glance through the whole paper
first; six questions, numbered Q1 through Q6. Do not spend more
time on any question or part than justified by the points it carries.

• Be precise. In your answers, try to use the programming notation and
syntax used in the questions. You can also use pseudo-code, provided
the meaning is precise and clear. If need be, explain your notation.
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Q1. Below is the pseudo-code of a program with two threads, p and q.
static volatile int n = 0;

p q
p1: while (n < 2) { q1: n++;
p2: println(n);} q2: n++;

The labels p1, p2, q1 and q2 are given only for ease of reference. After
executing p1, thread p terminates if n ≥ 2. If n < 2, then p’s next
steps are p2 and p1 again. Thread q executes (once) q1 and then q2 .
If you prefer actual Java code to pseudo-code, please see Appendix A.
(Part a) Must the value 2 appear in the output? Say why it must
appear, or give a scenario where it doesn’t appear. (2p)
(Part b) What is the maximum number of times the value 2 can
appear in the output? Why? (2p)
(Part c) Assuming a fair scheduler, what is the maximum number of
times the value 1 can appear in the output? Give a scenario. (2p)
(Part d) If the scheduler can be unfair, what is the maximum number
of times the value 1 can appear in the output? Give a scenario. (2p)
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Figure for use with Q2 and Q3.
The program below is meant to solve the critical section (CS) prob-
lem. In the pseudo-code below, of a program with two threads,
p and q, the instruction swap(turn, token) exchanges the val-
ues of turn and token atomically, i.e., in one step, with no in-
struction by the other thread occurring part way through swap.

static volatile int token = 1;
p q
int turn = 0; int turn = 0;
while (true) { while (true) {

//non-critical section //non-critical section
while (true) { while (true) {

p2: swap(turn, token); q2: swap(turn, token);
p3: if (turn==1) {break;} q3: if (turn==1) {break;}

}; };
p5: //critical section q5: //critical section

swap(turn, token); swap(turn, token);
} }

The labels are only for ease of reference. Remember that pi means that the
next command p will execute is pi. Remember also that the critical sections
must terminate, but that the non-critical sections need not.
If you prefer actual Java code to pseudo-code, please see Appendix A.
The transition table below abbreviates “p (resp. q) is at pi(resp. qi)” by
just “pi” (resp. “qi”) for i=2,3,5. We abbreviate “the value of turn in
thread p (resp. q)” by tp (resp. tq), and then write P (resp. Q) to mean
tp=1 (resp. tq=1). We write T to mean token=1. We write _ to mean either
token=0 or tp=0 or tq=0.
Some entries are left for you to fill in. The table has 11 rows.
s = (pi, qi, token, tp, tq) sp=next state if p moves sq=next state if q moves
s1 (p2, q2, T, _, _) fill this in = s6 (p2, q3, _, _, Q) = s3
s2 (p2, q3, T, _, _) fill this in = s7 (p2, q2, T, _, _) = s1
s3 (p2, q3, _, _, Q) (p3, q3, _, _, Q) = s8 (p2, q5, _, _, Q) = s4
s4 (p2, q5, _, _, Q) (p3, q5, _, _, Q) = s9 (p2, q2, T, _, _) = s1
s5 (p3, q2, T, _, _) (p2, q2, T, _, _) = s1 (p3, q3, _, _, Q) = s8
s6 fill this in fill this in = s10 fill this in
s7 fill this in fill this in = s11 fill this in
s8 (p3, q3, _, _, Q) (p2, q3, _, _, Q) = s3 (p3, q5, _, _, Q) = s9
s9 (p3, q5, _, _, Q) (p2, q5, _, _, Q) = s4 (p3, q2, T, _, _) = s5
s10 fill this in fill this in fill this in
s11 fill this in fill this in fill this in

Figure 1: CS-swap program and state-transition table for Q2 and Q3.
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This page left blank so tht you can detach p. 3 when doing Q2 and
Q3, which refer to the program and table on p. 3.
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Q2. Refer to the program in Fig. 1 on p. 3. The local variables turn and
the global variable token take only values 0 and 1.
We consider only the points p2, p3, p5, q2, q3 and q5 in the pro-
gram. We abbreviate “p (resp. q) is at pi(resp. qi)” by just “pi”
(resp. “qi”) for i=2,3,5.
Remember that we abbreviate“the value of turn in thread p (resp. q)”
by tp (resp. tq), and then write P (resp. Q) to mean tp=1 (resp. tq=1).
We write T to mean token=1. We write _ to mean either token=0 or
tp=0 or tq=0.
The table represents each state by a 5-tuple (pk, ql, token, tp,
tq). The left column lists the states, sorted first on pi, then succes-
sively on qi, token, tp, and tq. The states are named s1 through s11.
The next state if p (respectively q) next executes a step is given in the
middle (respectively last) column.
(Part a) Fill in the blanks to complete the state transition table.
Each entry should show a state, and in the middle and last columns,
also give its name. If you think a thread has no move from a state,
write “no move” in the corresponding entry. (4p)
(Part b) Prove from your state transition table that the program
ensures mutual exclusion. (1p)
(Part c) Can the program deadlock, i.e., does it have a state from
which neither thread can move? Prove your answer from the state
transition table. (1p)
(Part d) Is a triple (pk, ql, X) enough to represent each state in-
stead of the 5-tuple above? If so, what values would X take? (3p)
(Part e) A sequence of states s1, s2, ..., sk is said to be a path if there
is a move by either p or q that leads from each si to si+1, and a path
is called a cycle if sk = s1.
A p5-state is one where p is at p5. A p-Starvation cycle is a cycle with
no p5-states, but at least one p-move. So looping around a p-Starvation
cycle means p runs infinitely often, yet never reaches a p5-state.
Care! s1, s3, s4, s1, ... is a cycle, and it avoids p5, but it does
not count as p-Starvation, because no step in the cycle is a p move.
Find a p-Starvation cycle in the program. (4p)
(Part f) Let S0 be the set of all p5-states. Find a set S1 of states
from which every move leads either to S0 or to S1. (3p)
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Q3. Refer again to Fig. 1 on page 3, and see Q2 for notation used in
reasonoing about the program. In particular, what we mean by p2,
q3, tp, tq and so on. We also use the state names from Q2.
Here in Q3, you must argue from the program, not from the state
transition table (though you may seek inspiration from it!). You get
full credit for correct reasoning, whether you use formal logic, everyday
language, or a mixture. Formulas and logical laws make your argument
concise and precise, and help you keep track. With everyday language,
be careful not to be fuzzy, or to mistake wishful thinking for proof.
Appendix B reviews briefly the notation of propositional logic and
linear temporal logic.
Let I be (tp+ tq+ token = 1) and M be ¬(p5 ∧ q5).
(Part a). Show that I is invariant, i.e., that it holds when the program
starts, and then after every step of execution. (2p)
(Part b). Show that p5 → (tp = 1). Deduce that M is invariant.(2p)
(Part c). Show that (token = 1) → (¬p5 ∧ ¬q5). (2p)

(Part d). Show that whenever (p2 ∧ q2), then token = 1. (2p)

(Part e). Sketch a proof to show that (token = 1) → ♢(token = 0)
and (token = 0) → ♢(token = 1). (3p)
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Q4. Any number of east- and west-bound cars cross a single-lane bridge
carrying only one car at a time. The cars behave as below.

static semaphore ES = 1; static semaphore WS = 0
eb (eastbound car) wb (westbound car)

e1: //before the bridge w1: //before the bridge
e2: ES.acquire; w2: WS.acquire;
e3: //crossing bridge w3: //crossing bridge
e4: WS.release; w4: ES.release;
e5: //after the bridge w5: //after the bridge

The labels are only for ease of reference. Remember that ei means
that the next command eb will execute is ei. The actions e3 and w3
must terminate, but the actions e1, w1, e5 and w5 need not.
Appendix A gives an actual Java code version of the pseudo-code
above, for those who prefer actual code. The actual code uses a sin-
gle parameterised run function, so the semaphores are declared in an
array, and variables are used to note the direction of travel.
(Part a). Cars eb1, eb2 wish to cross the bridge eastwards and wb1,
wb2, wb3, westwards. List the orders in which the cars may cross.(4p).
(Part b). Suppose there are also devices called shuttles, se and sw,
that act as below:

se (eastbound shuttle) sw (westbound shuttle)
while true { while true {

se1: //quick and finite; sw1: //quick and finite;
se2: ES.acquire; sw2: WS.acquire;
se3: //quick and finite; sw3: //quick and finite;
se4: WS.release; sw4: ES.release;

} w5: }
How might the addition of shuttles improve the situation in Part a?
But the shuttles might also bring in a new problem. What? (4p).
(Part c). Suppose that the statements se1 and sw1 are replaced by
sleeps for a while. How does this help in Part b? (3p)
(Part d). Suppose now that the bridge has an east-bound lane and
a west-bound lane, so collisions are not a problem, and can carry a
maximum of 3 cars at a time. How would you take advantage of this
increased carrying capacity? If cars eb1, eb2 wish to cross the bridge
eastwards and wb1, wb2, wb3, westwards, show some execution se-
quences that get all the cars across. (4p)
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Q5. Consider the Erlang program below.

1 −module (wha ) .
2 −e xpo r t ( [ c e l l /4 , f e ed /2 , cm/0 , go / 1 ] ) .
3
4 c e l l ( Pred , N, M, Succ ) −>
5 r e c e i v e
6 dump when M /= 100 −>
7 i o : fo rmat ( ”~w~n” , [M] ) ,
8 Succ ! dump ;
9 X when (X > N) and (X =< M) −>

10 Temp=spawn (wha , c e l l , [ s e l f ( ) , X , M, Succ ] ) ,
11 c e l l ( Pred , N, X, Temp ) ;
12 X −>
13 Succ ! X,
14 c e l l ( Pred , N, M, Succ )
15 end .
16
17 cm( ) −> r e c e i v e _Any −> cm( )
18 end .
19
20 f e ed ( F i r s t , [ ] ) −> F i r s t ! dump ;
21 f e ed ( F i r s t , [H|T ] ) −> F i r s t ! H,
22 f e ed ( F i r s t , T ) .
23
24 go (L ) −>
25 Sink = spawn (wha , cm , [ ] ) ,
26 F i r s t = spawn (wha , c e l l , [ S ink , 0 , 100 , S ink ] ) ,
27 spawn (wha , feed , [ F i r s t , L ] ) .

On line 4, Pred and Succ are Pids, while N and M are integers. In line
6, dump is an atom, and /= means “not equal to”.
The value of the anonymous variable (_) in line 17 is ignored.
First (lines 20—22, 26, 27) and Sink (lines 25, 26) are Pids, and L
(lines 24, 27) is a list of integers.
In your answers below, include sketches showing you understand how
the network of processes grows and shrinks.
(Part a). What output does go([]) give? (2p).
(Part b). What output does go([5]) give? (2p).
(Part c). What output does go([6, 5]) give? (4p).
(Part d). What output does go([-3,5,4,103,4,0]) give? (4p).
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Q6. (Part a). What advantages does lock-free programming offer? Under
what conditions is it a good idea to use it? (2p).
(Part b). Here is a counting operation on a list data structure which
simply returns the number of nodes stored in the data structure. It
works in a sequential setting.

1 pub l i c i n t s i z e ( ) {
2 i n t s i z e = −1;
3 Node<T> c u r r ;
4 c u r r = head ;
5 do {
6 c u r r = c u r r . nex t ( ) ; // c u r r t o n e x t node i n c h a i n
7 s i z e += 1 ;
8 } whi le ( c u r r != t a i l ) ; // u n t i l c u r r == t a i l node
9 return s i z e ;

10 }

Is this implementation of size() thread safe? Say why it is, or give a
scenario where race conditions may occur. (3p)
(Part c). Consider another variant of list implementation where size,
of type AtomicInteger, is a capacity attribute that we wish to update
without using any locks.
Write a piece of code that increments size by one in a thread-safe
manner without locking. (3p)
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A Java code for the pseudo-code in the paper
Q1.

1 pub l i c c l a s s Hm {
2 s t a t i c v o l a t i l e i n t n = 0 ;
3
4 pub l i c s t a t i c void main ( S t r i n g [ ] a r g s ) {
5 Hm hm = new Hm( ) ;
6 P p = hm. new P ( ) ;
7 Q q = hm. new Q( ) ;
8 Thread tp = new Thread ( p ) ;
9 Thread tq = new Thread ( q ) ;

10 tp . s t a r t ( ) ;
11 tq . s t a r t ( ) ;
12 }
13
14 c l a s s P implements Runnable {
15 pub l i c void run ( ) {
16 whi le ( n < 2) {
17 System . out . p r i n t l n ( n ) ;
18 }
19 }
20 }
21
22 c l a s s Q implements Runnable {
23 pub l i c void run ( ) {
24 n++;
25 n++;
26 }
27 }
28 }

Since the threads are very small, you would, to test this code in prac-
tice, include sleeps for random amounts of time in P and Q, hoping to
get more interesting interleavings.

10



Q2 and Q3.

1 import j a v a . u t i l . c o n c u r r e n t . l o c k s . Reent rantLock ;
2 c l a s s CS_swap implements Runnable {
3 i n t turn , temp ; // t u r n = 1 means I h o l d t o k e n .
4 s t a t i c i n t token =1; // At i n i t , t h e t o k e n i s f r e e .
5 s t a t i c Reent rantLock l o c k = new Reent rantLock ( ) ;
6
7 pub l i c CS_swap ( ) {}
8 pub l i c void run ( ) {
9 whi le ( true ) { // o u t e r l o o p , f o r e v e r

10 whi le ( true ){
11 L2 : l o c k . l o c k ( ) ;
12 temp = tu rn ; t u rn = token ; token = temp ;
13 l o c k . un lock ( ) ;
14 L3 : i f ( tu rn==1) {break ; } ;
15 } ;
16 L5 : l o c k . l o c k ( ) ;
17 temp = tu rn ; t u rn = token ; token = temp ;
18 l o c k . un lock ( ) ;
19 } // end l o o p on l i n e 9
20 } // end r u n on l i n e 8
21
22 pub l i c s t a t i c void main ( S t r i n g [ ] a r g s ) {
23 Thread p = new Thread (new CS_swap ( ) ) ;
24 Thread q = new Thread (new CS_swap ( ) ) ;
25 // Make t h r e a d s p and q .
26 t ry {p . s t a r t ( ) ; q . s t a r t ( ) ;
27 p . j o i n ( ) ; q . j o i n ( ) ; // Wai t f o r t h e t h r e a d s t o f i n i s h .
28 } catch ( I n t e r r u p t e d E x c e p t i o n e ) {System . out . p r i n t l n ( ” ! ” ) ; }
29 }
30 } // end CS_swap

This minimalist program produces no output. To test it, include trace
prints, and sleeps for random amounts of time in p and q, to get
more interesting interleavings. Also, a counter inCS to keep track of
how many threads are in their critical section. To allow trace prints,
turn might be made global, the thread identity 0 and 1 stored locally,
and L3 might be under lock to allow a trace print of inCS without
interference.
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Q4.

1 import j a v a . u t i l . c o n c u r r e n t . Semaphore ;
2
3 c l a s s S lane implements Runnable {
4 i n t same , opp ;
5 s t a t i c f i n a l i n t E=0, W=1;
6 s t a t i c Semaphore [ ] EW = {new Semaphore ( 1 ) , new Semaphore ( 0 ) } ;
7
8 pub l i c S lane ( i n t x ) {same = x ; opp = 1 − same ; }
9 /∗ Used i n l i n e s 24 and 25 t o make t h r e a d s

10 E ( Ea s t −bound ) and W ( West−bound ) .
11 Fo r E , same=0 and opp =1. V i c e −v e r s a f o r W. ∗/
12
13 pub l i c void run ( ) {
14 t ry {
15 EW[ same ] . a c q u i r e ( ) ;
16 System . out . p r i n t l n ( Thread . cu r r en tTh read ( ) . getName ( ) + ” goes ” ) ;
17 EW[ opp ] . r e l e a s e ( ) ;
18 } catch ( I n t e r r u p t e d E x c e p t i o n e ) {
19 System . out . p r i n t l n ( e . getMessage ( ) ) ;
20 }
21 }
22
23 pub l i c s t a t i c void main ( S t r i n g [ ] a r g s ) {
24 S lane CE = new S lane (E ) ;
25 S lane CW = new S lane (W) ;
26 Thread e1 = new Thread (CE ) ; e1 . setName ( ” e1 ” ) ;
27 Thread e2 = new Thread (CE ) ; e2 . setName ( ” e2 ” ) ;
28 Thread w1 = new Thread (CW) ; w1 . setName ( ”w1” ) ;
29 Thread w2 = new Thread (CW) ; w2 . setName ( ”w2” ) ;
30 Thread w3 = new Thread (CW) ; w3 . setName ( ”w3” ) ;
31 w1 . s t a r t ( ) ; w2 . s t a r t ( ) ; w3 . s t a r t ( ) ; e1 . s t a r t ( ) ; e2 . s t a r t ( ) ;
32 }
33 }

Since the threads are very small, you would, to test this code in prac-
tice, include sleeps for random amounts of time in run, to try to get
more interesting interleavings.
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B Linear Temporal Logic (LTL) notation

1 An atomic proposition such as q2 (process q is at label q2) holds
for a state s if and only if process q is at q2 in s.

2 Let ϕ and ψ be formulas of LTL. Formulas are either atomic
propositions, or are built up from other formulas using the fol-
lowing operators: ¬ for “not”, ∨ for “or”, ∧ for “and”, → for “im-
plies”, □ for “always”, and ♢ for “eventually”. A convenient ab-
breviation is ϕ iff ψ (i.e., ϕ if and only if ψ) for (ϕ→ ψ)∧(ψ → ϕ).
These operators have the obvious meanings, but two differ from
what might be your interpretation of the names. First, ϕ∨ψ (“ϕ
or ψ”) is false iff both ϕ and ψ are false. This is an “inclusive or”,
so ϕ∨ψ is also true if both ϕ and ψ are true. Second, ϕ→ ψ (“ϕ
implies ψ”) is false iff ϕ is true and ψ is false. So, in particular,
ϕ→ ψ is true if ϕ is false. The meanings of the operators □ and
♢ are defined below.

3 A path is a possible future of the system, a possibly infinite se-
quence of states, each reachable from the previous state in the
path. A state s satisfies formula ϕ if every path from s satisfies
ϕ.
A path π satisfies □ϕ if ϕ holds for the first state of π, and for
all subsequent states in π. The path π satisfies ♢ϕ if ϕ holds for
some state in π.
Note that □ and ♢ are duals:

□ϕ ≡ ¬♢¬ϕ and ♢ϕ ≡ ¬□¬ϕ.
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Answers for the exam of Wednesday, 9 January 2019
Concurrent Programming TDA383/DIT390, and

Principles of Concurrent Programming TDA384/DIT391

Q1. (Part a) No, there may be no output: q completes, then p runs. (2p)
(Part b) Once. After writing 2, p1 fails test, so no more output. (2p)
(Part c) Fair: A finite number of times. Do q1, then run p many
times. Then q2 must run, which makes p exit. (2p)
(Part d) unfair -> infinitely often. Do q1, then always run p. (2p)

Q2. Part a (4p)
s = (pi, qi, token, tp, tq) sp=next state if p moves sq=next state if q moves
s3 (p2, q3, _, _, Q) (p3, q3, _, _, Q) = s8 (p2, q5, _, _, Q) = s4
s4 (p2, q5, _, _, Q) (p3, q5, _, _, Q) = s9 (p2, q2, T, _, _) = s1
s5 (p3, q2, T, _, _) (p2, q2, T, _, _) = s1 (p3, q3, _, _, Q) = s8
s8 (p3, q3, _, _, Q) (p2, q3, _, _, Q) = s3 (p3, q5, _, _, Q) = s9
s9 (p3, q5, _, _, Q) (p2, q5, _, _, Q) = s4 (p3, q2, T, _, _) = s5

Ans:

s1 (p2, q2, T, _, _) (p3, q2, _, P, _) = s6 (p2, q3, _, _, Q) = s3
s2 (p2, q3, T, _, _) (p3, q3, _, P, _) = s7 (p2, q2, T, _, _) = s1
s6 (p3, q2, _, P, _) (p5, q2, _, P, _) = s10 (p3, q3, _, P, _) = s7
s7 (p3, q3, _, P, _) (p5, q3, _, P, _) = s11 (p3, q2, _, P, _) = s6
s10 (p5, q2, _, P, _) (p2, q2, T, _, _) = s1 (p5, q3, _, P, _) = s11
s11 (p5, q3, _, P, _) (p2, q3, T, _, _) = s2 (p5, q2, _, P, _) = s10

(Part b) There is no (p5, q5, ...) state. (1p)
(Part c) No, “no moves”. Only busy waiting. (1p)
(Part d) Yes, X shows where the token is: with P, Q, or neither. (3p)
(Part e) Interleave s1, s3, s4 cycle with a run of p2; p3 after q has
acquired the token. (4p)
(Part f) S1={s6, s7} is the smallest set that satisfies the condition.
The largest would be the set of all the states in the system. (3p)

Q3. Let I be (tp+ tq+ token = 1), and M be ¬(p5 ∧ q5).
(Part a). At init, token=1, tp=tq=0. Only swap changes these
variables, preserves I. (2p)
(Part b). p5 can only be reached by tp=1 at p3. p5 and q5 cannot
happen because both tp and tq cannot be 1. (2p)
(Part c). p5 or q5 implies token=0. Contrapositive. (2p)
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(Part d). to show (p2 ∧ q2) → (token = 1), first show that q2) →
(tq = 0). This is true at init, and q can only return to q2 via q3 or
q5, in both cases with tq=0. Similarly for p2. (2p)
(Part e). If token=1, then neither p5 nor q5. One of them, say p, will
do a swap first, get the token. If token=0 then tp=1 (say). Wherever
p is, it will do a swap, and token=1. (3p)

Q4. (Part a). One of the eb’s, then a wb, then the other eb, and another
wb. One wb remains. (5p).
(Part b). The marooned wb can be rescued by a shuttle crossing
eastwards. But the shuttles might loop, monopolising the bridge. (4p).
(Part c). Sleep would make the shuttles of lower priority than the
cars. (3p)
(Part d). Initialize the semaphores to a sum of 3. to put 3 cars on
the bridge. Use shuttles as needed to get stranded cars across. (3p)

Q5. (Part a). What output does go([]) give? Ans: None. (2p).
(Part b). What output does go([5]) give? Ans: ”5, ”. (2p).
(Part c). What output does go([6, 5]) give? Ans: ”5, 6, ”. (4p).
(Part d). Output of go([-3,5,4,103,4,0]) is ”4, 4, 5, ” (4p).

Q6. for TDA383/DIT390
(Part a). A Prod-Cons monitor, buffer size 1. Symmetric, so either
can run first. Prod waits for Count==0 and sets Count=1. Cons is
vice-versa. Off bridge car actions done by users of the monitor. (3p).
(Part b). The same Prod-Cons will do. Run dummy cars that use
these, and make the bridge swap direction every so often. (2p).
(Part c). The dummy cars sleep between runs. (1p).
(Part d). Bridge entry and exit are in charge of the monitor, no risk
of user forgetting. Use of monitor clearly separated from monitor –
see parts b and c. Some loss of parallelism. (2p)

Q6. for TDA384/DIT391
(Part a). Save time on locking if rarely needed. (2p)
(Part b). If thread t removes a set element behind u’s curr, then u
will include it in the count even if t terminates before u. (3p)
(Part c). (3p)

int curSize;
do {

curSize = size.get();
} while (!size.compareAndSet(curSize, curSize + 1));
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