Chalmers | Göteborgs Universitet

Principles of Concurrent Programming
TDA384/DIT391

Saturday, 27 October 2018

Exam supervisor: Sandro Stucki (sandros@chalmers.se, 076 420 86 39)
(Exam set by K. V. S. Prasad based on the course given Sep-Oct 2018)

Material permitted during the exam (hjälpmedel):
Two textbooks; four sheets of A4 paper with notes; English dictionary.

Grading: You can score a maximum of 70 points. Exam grades are:

<table>
<thead>
<tr>
<th>Points in exam</th>
<th>Grade Chalmers</th>
<th>Grade GU</th>
</tr>
</thead>
<tbody>
<tr>
<td>28–41</td>
<td>3</td>
<td>G</td>
</tr>
<tr>
<td>42–55</td>
<td>4</td>
<td>G</td>
</tr>
<tr>
<td>56–70</td>
<td>5</td>
<td>VG</td>
</tr>
</tbody>
</table>

Passing the course requires passing the exam and passing the labs. The overall grade for the course is determined as follows:

<table>
<thead>
<tr>
<th>Points in exam + labs</th>
<th>Grade Chalmers</th>
<th>Grade GU</th>
</tr>
</thead>
<tbody>
<tr>
<td>40–59</td>
<td>3</td>
<td>G</td>
</tr>
<tr>
<td>60–79</td>
<td>4</td>
<td>G</td>
</tr>
<tr>
<td>80–100</td>
<td>5</td>
<td>VG</td>
</tr>
</tbody>
</table>

The exam results will be available in Ladok within 15 working days after the exam’s date.

Instructions and rules:

- Please write your answers clearly and legibly: unnecessarily complicated solutions will lose points, and answers that cannot be read will not receive any points!
- Justify your answers, and clearly state any assumptions that your solutions may depend on for correctness.
- Answer each question on a new page. Glance through the whole paper first; six questions, numbered Q1 through Q6. Do not spend more time on any question or part than justified by the points it carries.
- Be precise. In your answers, try to use the programming notation and syntax used in the questions. You can also use pseudo-code, provided the meaning is precise and clear. If need be, explain your notation.
Q1. The program below is meant to guess a non-zero integer that the user types in (at line 9). It does concurrent sequential searches, upwards and downwards from 0, and is correct if both processes terminate after one of them has found the goal.

```java
public class Guess implements Runnable {
    int you, me;

    public Guess(int x) {me=x; you=1-me;}

    public void run() {
        int i = 0;
        while (!found) {
            while (t == you) {}
            t = you;
            if (me==0) {i++;} else {i--};
            if (i==goal) {found=true;};
        }
        if (i==goal) {System.out.println("found "+i+" \n");}
        else {System.out.println("done "+i+" \n");};
        t = you;
    }

    public static void main(String[] args) {
        try {
            Thread p = new Thread(new Guess(0));
            Thread q = new Thread(new Guess(1));
            p.start(); q.start();
            p.join(); q.join();
        } catch (InterruptedException e) {System.out.println("except");}
    }
}
```

(Part a) Is the program correct? Say why you think it is, or find a counterexample scenario. In the latter case, say what the problem is—one or both processes loop, or something else. (4p)

(Part b) Comment out line 21 (t=you), and repeat Part a. Say why you think this new program is correct, or find a counterexample scenario. In the latter case, say what the problem is—one or both processes loop, or something else. (4p)
```java
class CSUser implements Runnable {
    int you, me;
    public CSUser(int x) {me=x; you=1-me;}
        /* Used in lines 27, 28 to make threads p and q.
In p, me=0 and you=1. In q, me=1 and you=0.
p and q share variables t and z. t is 0 or 1.
z[i] means i is not trying to enter its CS. */
    static int t=0;
    static boolean[] z = {true, true};
    public void run() {
        while (true) {
            // Non-critical section (NCS) before L2, after L5.
            // NCS code omitted. Processes can die here, but not in CS.
            L2: z[me] = false;
            t = you;
            while (true) {
                L3: if (z[you] || t==me) {
                    // Critical section (CS) after L3, before L5.
                    // CS Code omitted.
                    L5: z[me]=true;
                    break;
                }
            }
        }
    }
}

/* Main program, skipping details:
    Thread p = new Thread (new CSUser(0));
    Thread q = new Thread (new CSUser(1));
p.start (); q.start (); */
```

In the transition table below, \(p_i = \text{"p is at } L_i\), \(T = \text{true} \), and so on.

<table>
<thead>
<tr>
<th>s</th>
<th>sp=next state if p moves</th>
<th>sq=next state if q moves</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td>(p2, q2, T, T, 0)</td>
<td>(p3, q2, F, T, 1) = s5</td>
</tr>
<tr>
<td>s2</td>
<td>(p2, q3, T, F, 0)</td>
<td>(p3, q3, F, F, 1) = s7</td>
</tr>
<tr>
<td>s3</td>
<td>(p3, q2, F, T, 1)</td>
<td>(p5, q2, F, T, 1) = s9</td>
</tr>
<tr>
<td>s4</td>
<td>(p3, q3, F, F, 0)</td>
<td>no move</td>
</tr>
<tr>
<td>s5</td>
<td>(p3, q3, F, F, 0)</td>
<td>(p3, q5, F, F, 1) = s8</td>
</tr>
<tr>
<td>s6</td>
<td>(p5, q2, T, T, 1)</td>
<td>(p3, q2, F, T, 1) = s5</td>
</tr>
<tr>
<td>s7</td>
<td>(p5, q3, F, F, 0)</td>
<td>(p5, q3, F, F, 0) = s10</td>
</tr>
<tr>
<td>s8</td>
<td>no move</td>
<td>(p5, q3, F, F, 0) = s10</td>
</tr>
<tr>
<td>s9</td>
<td>(p5, q3, F, F, 0)</td>
<td>(p5, q3, F, F, 0) = s10</td>
</tr>
<tr>
<td>s10</td>
<td>(p2, q2, T, T, 1)</td>
<td>(p2, q2, T, T, 1) = s2</td>
</tr>
</tbody>
</table>

Figure 1: CS-user program and state-transition table for Q2 and Q3.
Page left deliberately blank, so you can separate page 3 for use with Q2 and Q3.
The outer loop of the program (lines 11 to 24) encloses the NCS and a pre-protocol (lines 14 and 15), followed by the inner loop (lines 16 through 23). Let \(\text{OK} = \text{z[you]} \text{ || t==me} \). The inner loop repeats until OK; then, the process executes its CS and post-protocol (L5) and breaks out to the main loop.

The state transition table considers only the points L2, L3 and L5 in the program. Let \(p_i \) stand for \(p_2, p_3, \) or \(p_5 \), and the boolean \(p_i \) for “process \(p \) is at \(L_i \)”. Similarly for \(q_i \). Let \(z_p = z[0] \) and \(z_q = z[1] \). The values of \(z \) are abbreviated T and F.

The table represents each state by a 5-tuple \((p_k, q_l, z_p, z_q, t)\). The left column lists the states, sorted first on \(p_i \), then successively on \(q_i \), \(z_p \), \(z_q \), and \(t \). The states are named \(s_1 \) through \(s_{10} \). The next state if \(p \) (respectively \(q \)) next executes a step is given in the middle (respectively last) column. In many states both \(p \) or \(q \) can execute the next step, and either may do so. But in some states, one or other of the processes may have no move to a new state.

Part a Fill in the blank rows to complete the state transition table. Each entry should show a state, and in the middle and last columns, also give its name. **(4p)**

Part b Prove from your state transition table that the program ensures mutual exclusion. **(1p)**

Part c Prove from your state transition table that the program does not live lock, i.e., enter a state which neither \(p \) nor \(q \) can leave. **(1p)**

Part d Does every state need all 5 elements of the 5-tuple to uniquely identify it, or do some of the elements follow from the others? Using such dependencies, what is the most concise state representation you can reach? **(4p)**

Part e Prove that given fair scheduling, every \(p_2 \)-state (one where \(p \) is at \(p_2 \)) will lead at some future point to a \(p_5 \)-state. Hint: Iteratively build a set \(S \) of all states that must lead to a \(p_5 \)-state in zero or more moves. First, \(S := \) the set of all \(p_5 \)-states, i.e., \(S = \{s_9, s_{10}\} \). Next, \(S := S \cup \{s_6\} \), as \(s_6 \) must lead into \(S \). This way, find the states that must lead finitely to a \(p_5 \)-state. List these states first. **(3p)**

For the remaining states, show that every state on every path from a \(p_2 \)-state has a transition into \(S \) via a move by \(p \). A fair scheduler has to choose one of these moves at some point. **(2p)**
Q3. Refer again to Fig. 1 on page 3, and see Q2 for notation used in reasoning about the program. In particular, what we mean by p2, q3, zp, zq and so on. We also use the state names from Q2.

In this question, you must argue from the program, not from the state transition table (though you may seek inspiration from it!). You get full credit for correct reasoning, whether you use formal logic, everyday language, or a mixture. Formulas and logical laws make your argument concise and precise, and help you keep track of it. With everyday language, be careful not to be fuzzy, or to mistake wishful thinking for proof.

The Appendix reviews briefly the notation of propositional logic and linear temporal logic.

Let $M = \neg(p5 \land q5)$ and $L = p2 \rightarrow \diamond p5$. Your task is to prove mutex, $\Box M$, and liveness, $\Box L$, assuming weak fairness: if a transition is continually enabled, it will take place at some time.

Let $N = (p2 \iff zp) \land (q2 \iff zq)$.

(Part a). Show that N is invariant, i.e., that the start state s_1 satisfies $\Box N$. (2p)

(Part b). Show $\Box M$ by induction. First show that the start state s_1 satisfies M.

Then show that every transition preserves M. The only transitions that could start with M and end with $\neg M$ are those starting from $p3 \land q5$ or $p5 \land q3$. By symmetry, we need deal only with $p5 \land q3$. Use Part a to show that in this state, each combination of zp, zq and t allows precisely one of p and q to proceed. You will need to consider the two kinds of states that can transition to a $p5 \land q3$ state. (5p)

(Part c). Prove $\Box L$. Hint: Note that p can proceed from $p2$ to $p3$, by fairness. Then show that if p is blocked, q must unblock it by an execution of $q2$ or $q5$. If p is unblocked but not scheduled, then q will unblock p and block itself. (5p)
Q4. Consider the Erlang program below.

```erlang
-module(what).
-compile(export_all).

4 ints(N, MAX, Pidi) when N > MAX ->
5     skip;
6 ints(N, MAX, Pidi) ->
7     Pidi!N,
8     ints(N+1, MAX, Pidi).
9
t front() ->
10    receive
11       N ->
12           X = spawn(what, front, []),
13           io:format("~p~n", [N]),
14           filter(N, X)
15       end.
16
17    filter(P, X) ->
18        receive
19           N when N rem P == 0 ->
20               X!N,
21               filter(P, X);
22           _ ->
23               filter(P, X)
24      end.
25
26 what (P,MAX) ->
27     Pidi = spawn(what, front, []),
28     spawn(what, ints, [P, MAX, Pidi]).
```

(Part a). Suppose we compile the program and evaluate `what: what(2,100)`. Draw pictures of the network as the computation takes its first few steps. What does the program print? (5p)

(Part c). Does the program terminate? (1p)

(Part d). Does it matter whether the receiving processes read their inputs right away, or wait till several messages accumulate? (2p)

(Part e). Change the program so that `what: what(2,100)` prints all the primes from 2 to 100. (2p)
Q5. A single-lane road changing direction when there is a gap in traffic.

```java
class Car implements Runnable {
    static final int E=0, W=1;
    static Semaphore [] EW = {new Semaphore(0), new Semaphore(0)};
    static Semaphore toll = new Semaphore(1);
    static int [] q = {0, 0}, b = {0, 0};
    int same, opp;
    public Car (int x) {same = x; opp = 1 - same;}
    /* Lines 39, 40 make threads Car(E) (resp. Car(W)) going east
     (resp. west). For Car(E), opp=W. For Car(W), opp=E. The ints
     q[E] (resp. b[E]) say how many cars are waiting to go (resp.
     are crossing) eastwards. For west, q[W] and b[W]. Car(E) (resp.
     Car(W)) might wait on semaphore EW[E] (resp. EW[W]). */
    public void run() {
        try { //to wait to enter,
            toll.acquire();
            // Trace print car name + "registers");
            if (b[opp]>0){
                q[same]++;
                toll.release();
                EW[same].acquire();
            };
            b[same]++;
            if (q[same] > 0){
                q[same]--;
                EW[same].release();
            } else toll.release();
            // Trace print car name + "crossing").
            toll.acquire();
            b[same]--;
            if(b[same] == 0 && q[opp]>0) {
                q[opp]--;
                EW[opp].release();
            } else toll.release();
        } catch (InterruptedException e){System.out.println("except");}
    }
    /* The main program, skipping details, is
    Car CE = new Car(E); Car CW = new Car(W);
    Thread e1 = new Thread(CE); Thread w1 = new Thread(CW);
    etc., followed by e1.start(), w1.start(), etc. */
}
```
[Q5. contd.] A stretch of hill road is wide enough to fit only one vehicle, but cars can enter from both directions. Traffic flows in only one direction at a time; the direction, east (E) or west (W), can change when there is a gap in the traffic.

The cars are named e1, e2, w1, w2, etc., so we know which way they are going. For convenience in the program, E and W are given integer values 0 and 1. For each car, same is its direction, and opp is the opposite direction.

To control traffic, there are electronically linked toll gates at both ends of the stretch, registering cars upon entry, and checking that every car has left safely.

(Part a). Put trace prints at line 17 (after toll.acquire()) and at line 28, giving car name and “registers” or "crossing", respectively. Suppose there are only 3 cars, two east-bound, and one west-bound. For the printout beginning with “e1 registers, w1 registers”, and the one starting “w1 registers”, what are the possible crossing sequences? Show a sequence of semaphore actions that produces each crossing sequence. (4p)

(Part b). Is a registering car sure to cross? (2p)

(Part c). Show that 0 ≤ toll + EW[E] + EW[W] ≤ 1, where we use the names of the semaphores to stand for their values. (4p)

(Part d). Show that the crossing cars are therefore either all east-bound or all west-bound. (3p)
Q6. AtomicInteger is an int value that may be updated atomically. Recall that a non-blocking algorithm is lock-free if it guarantees system-wide progress, and wait-free if it also guarantees per-thread progress.

Let x be a shared variable that might be set by multiple processes. The method compare-and-set, x_CAS(expect, new), atomically sets x to new, and returns true, if $x == expect$. It returns false if $x != expect$. CAS is more expensive than ordinary reads and writes.

(Part a). The code snippet below is executed by thread t. Say, with reasons, what properties the snippet has.

```java
AtomicInteger x = new AtomicInteger(0);
int v;
thread t executes code below

for { 
    v = x.get();
    v = v + 1;
} while (!x.CAS(v - 1, v));
```

Is the code starvation free? Lock-free? Wait-free? Can the process exit the code without updating x? (2p)

(Part b). The code snippet below is executed by thread t. Say, with reasons, what properties the snippet has.

```java
AtomicInteger x = new AtomicInteger(0);
for (int i = 0; i < 10000; i++) {
    v = x.get();
    v = v + 1;
    if (x.CAS(v - 1, v))
        break;
}
```

Is the code starvation free? Lock-free? Wait-free? Can the process exit the code without updating x? (2p)

(Part c). The above two snippets try to update a variable and retry if need be. Under high contention this could result in a lot of retries. For that situation, suggest a variation whose retries are cheaper. (4p)

(Part d). Under what conditions would lock-based algorithms offer better throughput than nonblocking ones? (2p)
A Linear Temporal Logic (LTL) notation

1. An atomic proposition such as $q2$ (process q is at label $q2$) holds for a state s if and only if process q is at $q2$ in s.

2. Let ϕ and ψ be formulas of LTL. Formulas are either atomic propositions, or are built up from other formulas using the following operators: $
eg$ for “not”, \lor for “or”, \land for “and”, \to for “implies”, \Box for “always”, and \Diamond for “eventually”. A convenient abbreviation is ϕ iff ψ (i.e., ϕ if and only if ψ) for $(\phi \to \psi) \land (\psi \to \phi)$.

These operators have the obvious meanings, but two differ from what might be your interpretation of the names. First, $\phi \lor \psi$ (“ϕ or ψ”) is false iff both ϕ and ψ are false. This is an “inclusive or”, so $\phi \lor \psi$ is also true if both ϕ and ψ are true. Second, $\phi \to \psi$ (“ϕ implies ψ”) is false iff ϕ is true and ψ is false. So, in particular, $\phi \to \psi$ is true if ϕ is false. The meanings of the operators \Box and \Diamond are defined below.

3. A path is a possible future of the system, a possibly infinite sequence of states, each reachable from the previous state in the path. A state s satisfies formula ϕ if every path from s satisfies ϕ.

A path π satisfies $\Box\phi$ if ϕ holds for the first state of π, and for all subsequent states in π. The path π satisfies $\Diamond\phi$ if ϕ holds for some state in π.

Note that \Box and \Diamond are duals:

$$\Box\phi \equiv \neg\Diamond\neg\phi \quad \text{and} \quad \Diamond\phi \equiv \neg\Box\neg\phi.$$
Answer sketches for the exam on 27 Oct 2018.

1a. Correct. A process can only be stuck on line 14. Assume one process is stuck here.

The other process will either loop in the outer loop, eventually coming to line 15, and release the stuck process.

If a process is stuck when the other process executes line 16 and finds the goal, the stuck process is released via line 21.

In any case, both processes will always terminate, given a goal is found.

1b. Assume goal>0. Let p proceed till i=goal, and p is at line 17, and t=1 (points at q).

Before p sets found=true, let q do a whole loop, using its turn. At line 15, it sets t=0 (p's turn).

Let q continue past the whole loop, and back into line 14, where it loops. Let p exit now. q is stuck.

2a. In the transition table below, pi = "p is at Li", T = true, and so on.

<table>
<thead>
<tr>
<th>state if q moves</th>
<th>sp=next state if p moves</th>
<th>sq=next state if q moves</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1 (p2, q2, T, T, 0)</td>
<td>(p3, q2, F, T, 1) = s5</td>
<td>(p2, q3, T, F, 0) = s3</td>
</tr>
<tr>
<td>q3, T, F, 0 = s3</td>
<td>(p3, q2, F, T, 1) = s5</td>
<td>(p2, q3, T, F, 0) = s3</td>
</tr>
<tr>
<td>s2 (p2, q2, T, T, 1)</td>
<td>(p3, q3, F, F, 1) = s7</td>
<td>(p2, q3, T, F, 0) = s3</td>
</tr>
<tr>
<td>q5, T, F, 0 = s4</td>
<td>(p3, q5, F, F, 1) = s8</td>
<td>(p2, q2, T, T, 0) = s1</td>
</tr>
<tr>
<td>s4 (p2, q5, T, F, 0)</td>
<td>(p5, q2, F, T, 1) = s9</td>
<td>(p2, q5, F, F, 1) = s6</td>
</tr>
<tr>
<td>q2, T, T, 0 = s1</td>
<td>(p5, q5, F, F, 1) = s8</td>
<td>(p2, q5, F, F, 0) = s6</td>
</tr>
<tr>
<td>s5 (p3, q2, F, T, 1)</td>
<td>(p5, q3, F, F, 0) = s10</td>
<td>(p2, q5, F, F, 0) = s6</td>
</tr>
<tr>
<td>q3, F, F, 0 = s6</td>
<td>(p3, q3, F, F, 0) = s7</td>
<td>(p2, q5, F, F, 0) = s6</td>
</tr>
<tr>
<td>s6 (p3, q3, F, F, 0)</td>
<td>(p5, q3, F, F, 0) = s10</td>
<td>(p2, q5, F, F, 0) = s6</td>
</tr>
<tr>
<td>q5, F, F, 1 = s8</td>
<td>(p3, q5, F, F, 1) = s7</td>
<td>(p2, q5, F, F, 0) = s6</td>
</tr>
<tr>
<td>s8 (p3, q5, F, F, 1)</td>
<td>no move</td>
<td>(p3, q5, F, F, 0) = s6</td>
</tr>
<tr>
<td>q2, F, T, 1 = s5</td>
<td>no move</td>
<td>(p3, q5, F, F, 0) = s6</td>
</tr>
<tr>
<td>s9 (p5, q2, F, T, 1)</td>
<td>(p2, q2, T, T, 1) = s2</td>
<td>(p5, q3, F, F, 0) = s10</td>
</tr>
<tr>
<td>q3, F, F, 0 = s10</td>
<td>no move</td>
<td>(p2, q3, F, F, 0) = s10</td>
</tr>
<tr>
<td>s10 (p5, q3, F, F, 0)</td>
<td>(p2, q3, F, F, 0) = s3</td>
<td>no move</td>
</tr>
</tbody>
</table>

2b. No state (p5, q5, ...)

2c. No state where both p and q are stuck in the same state

2d. zp iff p2. zq iff q2. So we don't need zp and zq. t is needed only to separate s1-s2 and s6-s7. Elsewhere, q2 iff t1. Alternatively, p2 iff t0.

So for most states, we only need pi and qj. For s1, s2, s6 and s7, we also need t.

2e. Start with S = s9, s0.

Then S = s9, s10, s6.
S = s9, s10, s6, s5.
S = s9, s10, s6, s5, s8.
S = s9, s10, s6, s5, s8, s7.

That leaves s1 - s4, all p2-states, each with a p-move into S. The system can loop here, and avoid S, only by choosing q every time.
3a. Base case: s1 satisfies N. Step cases: Departing from p2 sets zp false (at L2). Returning to p2 (at L5) sets zp true. Similarly for q.

3b and 3c. Just follow the detailed instructions in the questions themselves!

4a. The network starts with ints feeding into front. Every time front sees a number N, it splits into filter(N) and front. So we have ints--filters--front.

A detailed image can be found on the course web page. The program prints 2, 4, 8, 16, 32, 64.

4b. start(3,100) produces 3, 6, 12, 24, 48, 96 and start(5,100) produces 5, 10, 20, 40, 80.

4c. Yes it terminates when it reaches MAX.

4d. No, this can be tested by putting in random sleeps. Erlang process mailboxes are FIFO. Some argued that the filters doesn't matter, but front does. This is not the case, as front, after the first message, will become a filter.

4e. Change N rem P == 0 to N rem P /= 0.

5a. If w1 registers first, it will cross first. The rest is any interleaving of (e1 registers, e1 crossing) and (e2 registers, e2 crossing).

If the sequence begins "e1 registers, w1 registers", then e1 will cross first.

The rest can be "w1 crossing, e2 registers, e2 crossing" or "e2 registers, e2 crossing, w1 crossing".

5b. Yes, because each car only crosses once, and there can only be a finite number in each direction.

5c. Let TEW be toll + EW[E] + EW[W] and let I be the boolean 0 <= TEW <= 1. We have to show I is invariant. The three semaphores are initialized (T=1, E=W=0), so I is true at the start.

Examining the program, we see that each acquire is followed by a release, although not necessarily of the same semaphore.

Since there are no computations with two releases without an intervening acquire, the value of the expression cannot be larger than one.

5d. The formula (b[1] > 0) -> (b[0] = 0) is true initially, since the antecedent is false.

How can the antecedent become true? Only by getting to line 23, either because b[0] = 0 at line 18, or via line 33 after line 21, which again means b[0] = 0.

6a. Lock free, but none of the other properties.

6b. Starvation-, wait-, lock-free. Can fail after 10000 iterations.

6c. Do test-and-test-and-set. So embark on CAS only if current=expect.

6d. If contention very high.
First steps of evaluating `What(2, 100)`.

Initial structure:

\[
\text{ints} \quad \text{front}
\]

Pidi! 2

\[
\begin{array}{c}
\text{ints} \\
\downarrow \\
\text{filter}(2)
\end{array}
\begin{array}{c}
\text{front} \\
\downarrow \\
\text{front}
\end{array}
\]

- New front is created.
- Old front becomes filter.
- "2" is printed.

Pidi! 3

\[
\begin{array}{c}
\text{ints} \\
\downarrow \\
\text{filter}(2)
\end{array}
\begin{array}{c}
\text{front} \\
\downarrow \\
\text{front}
\end{array}
\]

3 \text{ rem } 2 = 1, so nothing happens.

Pidi! 4

\[
\begin{array}{c}
\text{ints} \\
\downarrow \\
\text{filter}(2)
\end{array}
\begin{array}{c}
\text{front} \\
\downarrow \\
\text{front}
\end{array}
\]

- 4 \text{ rem } 2 = 0, so 4 is sent to front.
- New front is created.
- Old front becomes filter.
- "4" is printed.

This continues, and 2, 4, 8, 16, 32, 64 gets printed.