Concurrent Programming TDA383/DIT390

Saturday, 18 March 2017, 14:00–18:00

(including example solutions)

Teacher/examiner: Carlo A. Furia (furia@chalmers.se – 0317721675)
(the examiner will visit the exam rooms twice: around 15:00 and around 17:00)

Exercise 1: Concurrency properties (15 points)

Consider the following concurrent program P, where two threads t and u execute in parallel and access a single shared integer variable v.

```plaintext
int v = 1;

thread t
  1 v = 1;
  2 int i = v;
  3 v = 2*i;

thread u

Question 1.1 (1 point): Does program $P$ have race conditions? Justify your answer.

A following question indicates that program $P$ may terminate with different final values of variable $v$. Thus, the final value of $P$’s computation depends on the interleaving of concurrent threads, which is the definition of race conditions.

Question 1.2 (2 points): What are the critical sections of the code executed by thread $t$ and of the code executed by thread $u$?

Since both threads access the shared variable $v$ in every statement of their code, their critical sections correspond to the whole code they each execute.

Question 1.3 (2 points): List all data races that exist in program $P$.

There are two data races, corresponding to the instruction pairs on lines (1, 2) and (1, 3).
Question 1.4 (4 points): Write two complete traces corresponding to two possible executions of program $P$ such that the final value of $v$ is different in the two traces. Each trace must be a sequence of program states, where each state indicates: the value of $v$, the program counters (the line number of the statement to be executed next) of $t$ and of $u$, and the value of $u$’s local variable $i$.

A trace where the final value of $v$ is 2:

<table>
<thead>
<tr>
<th>#</th>
<th>t’S LOCAL</th>
<th>u’S LOCAL</th>
<th>SHARED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pc$ _t$ : 1</td>
<td>pc$ _u$ : 2 i : ⊥</td>
<td>v : 1</td>
</tr>
<tr>
<td>2</td>
<td>done</td>
<td>pc$ _u$ : 2 i : ⊥</td>
<td>v : 1</td>
</tr>
<tr>
<td>3</td>
<td>done</td>
<td>pc$ _u$ : 3 i : 1</td>
<td>v : 1</td>
</tr>
<tr>
<td>4</td>
<td>done</td>
<td>done</td>
<td>v : 2</td>
</tr>
</tbody>
</table>

A trace where the final value of $v$ is 1:

<table>
<thead>
<tr>
<th>#</th>
<th>t’S LOCAL</th>
<th>u’S LOCAL</th>
<th>SHARED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>pc$ _t$ : 1</td>
<td>pc$ _u$ : 2 i : ⊥</td>
<td>v : 1</td>
</tr>
<tr>
<td>2</td>
<td>pc$ _t$ : 1</td>
<td>pc$ _u$ : 3 i : 1</td>
<td>v : 1</td>
</tr>
<tr>
<td>3</td>
<td>pc$ _t$ : 1</td>
<td>done</td>
<td>v : 2</td>
</tr>
<tr>
<td>4</td>
<td>done</td>
<td>done</td>
<td>v : 1</td>
</tr>
</tbody>
</table>

Question 1.5 (6 points): Build a complete state/transition diagram modeling all possible executions of program $P$. Each state of the diagram should indicate: the value of $v$, the program counters (the line number of the statement to be executed next) of $t$ and of $u$, and the value of $u$’s local variable $i$. Also mark the initial and final states of the diagram.

Exercise 2: Semaphores (10 points)

Consider some threads that execute in parallel; the threads share an integer variable $x$, whose value is initially 0, and synchronize by means of a shared semaphore instance $\text{sem}$ – initialized to value 1 (the semaphore’s capacity):

```
Semaphore sem = new Semaphore(1); int x = 0; // shared variables
```
Question 2.1 (3 points): Implement a method `void mayDecrement(int n)`, which atomically subtracts `n` from `x` if `x` is greater than or equal to `n`; otherwise, it terminates without modifying `x`. Your solution must only use `sem` and `x` for synchronization.

```c
void mayDecrement(int n) {
 sem.down() // get exclusive access
 if (n <= x) x = x - n;
 sem.up(); // release exclusive access
}
```

Question 2.2 (2 points): Briefly explain the difference between a binary semaphore (such as `sem`) and a lock. Could you have used a lock instead of a binary semaphore in solving the previous question?

In a binary semaphore, a thread other than the one which performs a `down` can execute a subsequent `up`. In a lock, the locking thread is the only one that can release the lock. The solution to the previous question uses the binary semaphore as a lock, so the additional power of semaphores is not needed.

Question 2.3 (2 points): Briefly explain the difference between strong and weak semaphores.

Question 2.4 (3 points): Write the code of a generic thread `t_k` in a way that starvation may occur (assuming all threads execute the same code) if `sem` is a weak semaphore, but it could not occur if `sem` is a strong semaphore – whereas deadlocks never occur regardless of the semaphore’s type.

Suppose all threads repeatedly decrement and increment back the semaphore:

```c
while (true) {
 sem.down();
 sem.up();
}
```

If the semaphore is weak, it is possible that a thread blocked trying to execute `down()` will never be selected to acquire the semaphore. In contrast, if the semaphore is strong, any thread blocked trying to execute `down()` will acquire the semaphore as soon as all other threads that have been waiting longer have acquired (and released) it.
Exercise 3: Monitors – synchronization  

In an office environment, there are an unspecified number of desks, and two kinds of workers: clerks and cleaners. Workers behave as follows:

Clerks may arrive at the office at any time. In order to get to work, they wait until they have exclusive access to an available desk that has been cleaned. After working for an unspecified amount of time, they leave the desk, which needs cleaning.

Cleaners work on one desk at a time. Each cleaner waits until a clerk leaves a desk, at which point the cleaner starts cleaning the desk, and then signals when cleaning is completed.

We model the office environment in Java pseudo-code using monitor classes:

- Desks corresponds to instances of a class Desk, whose details are irrelevant.
- The office is an instance of type Office with interface:

```java
interface Office {
 Desk arrive(); // get an available, clean desk
 void leave(Desk desk); // leave desk ‘desk’
 Desk service(); // get a desk to clean
 void cleaned(Desk desk); // desk ‘desk’ is now clean
}
```

- Clerks and cleaners correspond to threads sharing an instance of Office and calling its public methods continuously as follows:

```java
Office office = new OpenOffice();

while (true) {
 Desk desk = office.arrive(); // work at desk
 office.leave(desk);
}

while (true) {
 Desk desk = office.service(); // clean desk
 office.cleaned(desk);
}
```

The goal of this exercise is to provide a monitor class OpenOffice with interface Office, whose behavior follows the above description. You should use the Java pseudo-code for monitors that we used in class:

```java
monitor class OpenOffice implements Office
```

and assume a signal and continue signaling discipline.

**Question 3.1 (4 points):** Declare the condition variables and other private attributes that you need in OpenOffice. For each of them, concisely indicate in a comment what it represents.

```java
Set<Desk> cleanDesks, dirtyDesks; // sets of clean, dirty desks
Condition clean = new Condition(); // condition variable: a clean desk is available
Condition dirty = new Condition(); // condition variable: a dirty desk is available
```
Question 3.2 (4 points): Write the implementation of methods arrive and leave.

```java
Desk arrive() {
 while (cleanDesks.size() == 0) // wait until a clean desk is available
 clean.wait();
 return cleanDesks.get(); // return it
}

void leave(Desk desk) {
 dirtyDesks.put(desk); // give back a desk, which is now dirty
 dirty.signal(); // signal that a dirty desk is available
}
```

Question 3.3 (4 points): Write the implementation of methods service and cleaned.

```java
Desk service() {
 while(dirtyDesks.size() == 0) // wait until a dirty desk is available
 dirty.wait();
 return dirtyDesks.get(); // return it
}

void cleaned(Desk desk) {
 cleanDesks.put(desk); // give back a desk, which is now clean
 clean.signal(); // signal that a clean desk is available
}
```

Question 3.4 (2 points): Would you have to change your implementation if we used monitors following the signal and wait signaling discipline? Briefly justify your answer.

No changes to the given solution are needed: signaling is only done as last statement in a method, and the while loops checking for a condition while waiting also work under signal and wait.
Exercise 4: Monitors – signaling disciplines  

Consider the following monitor class MC:

```java
monitor class MC
{
 private int x = 1;
 private Condition c = new Condition();
 private Condition d = new Condition();

 public void m() {
 if (x == 2) { c.wait(); }
 x = x + 1;
 d.signal();
 }

 public void n() {
 if (x == 0) { c.signal(); d.wait(); }
 x = x - 1;
 }
}
```

Note that the methods are monitor methods, so any thread running them implicitly executes in mutual exclusion (acquires a lock on the monitor at the beginning, and releases it at the end). In all questions, we assume that an arbitrary number of threads share one instance of MC, and may call its methods m() and n() at any time.

**Question 4.1 (2 points):** Explain why deadlock is not possible – under the assumption that threads continuously call both m() and n().

Deadlock occurs if no threads make progress. Threads calling m() and n() can only block when calling wait() on one of the condition variables. But the conditions under which they execute wait are mutually exclusive: if, say, a thread blocks in n(), then x == 0, and thus x != 2, and thus any thread executing m() does not block.

**Question 4.2 (4 points):** Assume that the system only includes threads t, u, and v, and that the monitor follows a signal and wait signaling discipline. Describe a scenario where starvation of t trying to execute m() occurs; the answer should describe a sequence of calls executed by t, u, and v such that t starves from some point on.

Suppose t executes m() when x == 2, so that it blocks in the queue c.blocked of blocked threads on condition c. Then, u and v strictly alternate respectively calling n() and m(). Since they strictly alternate, x’s values alternates between 1 (after u calls n()) and 2 (after v calls m()), so that c.signal() – which would unblock t – is never called.
Question 4.3 (4 points): Assume that the monitor follows a signal and wait signaling discipline. Is it possible that a thread that blocks on \texttt{c.wait()} – while executing \texttt{m()} – is unblocked, and resumes execution, in a state such that \( x == 2 \)? If it is possible, describe a scenario where this occurs; if it is not possible, explain why it is not possible.

This is not possible. Suppose a thread \( t \) is blocked in \texttt{c.blocked}'s queue, since it called \texttt{c.wait()}. When another thread calls \texttt{c.signal()}, \( t \) immediately resumes execution according to the signal and wait signaling discipline; since \texttt{c.signal()} is called when \( x == 0 \), \( t \) will resume execution in a state with \( x == 0 \neq 2 \).

Question 4.4 (4 points): Answer the previous question but now assuming that the monitor follows a signal and continue signaling discipline: Is it possible that a thread that blocks on \texttt{c.wait()} while executing \texttt{m()} is unblocked, and resumes execution, in a state such that \( x == 2 \)? If it is possible, describe a scenario where this occurs; if it is not possible, explain why it is not possible.

This is possible. Suppose a thread \( t \) is blocked in \texttt{c.blocked}'s queue, since it called \texttt{c.wait()} with \( x == 2 \). While \( t \) is blocked, other threads queue for entry to the monitor; first, two calls to \texttt{n()} execute without blocking; then, one more call to \texttt{n()} for entry, followed by two threads calling \texttt{m()}. The additional call to \texttt{n()} finds \( x == 0 \), and blocks after signaling \texttt{c.signal()} to unblock \( t \). However, under the signal and continue signaling discipline, \( t \) is moved to the back of the entry queue after the two threads waiting to call \texttt{m()}. Thus, these two threads will get to execute before \( t \), incrementing \( x \) all the way back up to 2. When \( t \) finally executes, it will thus find \( x == 2 \).

Exercise 5: Erlang – servers (15 points)

An integer number \( P \) is a prime if it is only exactly divisible by 1 and \( P \) itself. The factorization of a positive integer \( N \) is a collection of primes, called the factors of \( N \), whose product is exactly \( N \).

In this exercise, we build an Erlang program in the style of servers, which computes the factorization of integers.

Question 5.1 (4 points): Define an Erlang function \texttt{prime(X)}, which takes an integer \( X \), and returns \texttt{true} if \( X \) is prime, and \texttt{false} otherwise. You can assume that \( X \) is always a positive integer. Hint: it may be convenient to define a helper function, which is called by \texttt{prime}'s implementation.

Recall that, in Erlang, the infix operator \texttt{rem} computes the remainder of the integer division of its arguments (similarly to \texttt{%} in Java); for example: \texttt{10 rem 4} is 2, \texttt{10 rem 3} is 1, and \texttt{10 rem 5} is 0.

```
% is 'X' prime?
prime(1) -> true;
prime(X) -> not composite(X, X-1).

% is 'X' divisible by any integer between 2 and Y?
composite(_, 1) -> false;
composite(X, Y) -> (X rem Y == 0) or composite(X, Y-1).
```
**Question 5.2 (6 points):** Define a server event loop function `factors(N, State, Recipient)` that works as follows. It accepts messages in the form `{fac, P}` where P is a positive integer greater than 1, and checks whether P is prime (by calling function `prime` defined in the previous question). If P is not prime, the message is ignored; if P is prime and P is a factor of N, the server updates its state to store P as an additional factor, and goes back to accepting messages suggesting other factors. When the factorization of N is complete, the server first sends to the process with PID Recipient the factorization as a list of factors (in any order), and then it terminates.

```erlang
factors(1, State, Recipient) -> Recipient ! State;
factors(N, State, Recipient) ->
 receive
 % N rem P == N if P >= N
 {fac, P} ->
 case prime(P) and (N rem P == 0) of
 false -> factors(N, State, Recipient);
 true -> factors(N div P, [P|State], Recipient)
 end
 end.
end.
```

**Question 5.3 (5 points):** Define a function `test(N, TryFactors)` that tests factors as follows. The function `test` spawns a process running `factors(N, State, Recipient)` with `Recipient` equal to the PID of the process running `test`, and `State` a suitable initial state of the server; it then sends, to the spawned server process, several messages `{fac, F}` – precisely, one for every element F of the list `TryFactors`; finally, it waits for the spawned process to send back a list, and returns true if the sent list has the same elements as `TryFactors`. To compare the sent list and `TryFactors` you can assume a function `same_elements(L1, L2)` that compares two lists is available. Note that `test(N, TryFactors)` may not terminate if `TryFactors` is not the factorization of N – this is acceptable behavior.

```erlang
test(N, TryFactors) ->
 Me = self(),
 Server = spawn(fun () -> factors(N, [], Me) end),
 [Server ! {fac, F} || F <- TryFactors],
 receive ComputedFactors -> same_elements(ComputedFactors, TryFactors) end.
```

8