
Chalmers | GÖTEBORGS UNIVERSITET

K. V. S. Prasad, Computer Science and Engineering

Concurrent Programming TDA383/DIT390

Saturday 22 Oct 2016 pm in HA/HB/HC

K. V. S. Prasad, tel. 0736 30 28 22
will visit approximately one hour after the start and one hour before the end

• Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok)

• Maximum you can score on the exam: 68 p. This paper has six questions, on pages 2 through
7, each carrying 12p, except Question 1, which carries 8p. An Appendix, on pages 9 and 10,
summarises the pseudo-code, logic and Linda notation used in this question paper.

To pass the course, you need to pass each lab, and score at least 28 p on the exam. Further:

Exam grades: (CTH): grade 3: 28-40 p, grade 4: 41-54 p, grade 5: 55-68 p.
(GU): grade G: 28-54 p, grade VG: 55-68 p.

Course grades: CTH (exam + labs): grade 3: 40-59 p, grade 4: 60-79 p, grade 5: 80–100 p.
GU (exam + labs): grade G: 40-79 p, grade VG: 80–100 p.

• Results: within 21 days.

• Notes: PLEASE READ THESE

– Time planning: Allow 3 minutes per point; that is, about 25 mins. for Question 1, and
about 35 mins. for each of the other questions. You will then have half an hour to look
over your work at the end. Do not get stuck for more time than you can afford on any
question or part.

– Start each question on a new page.

– The pseudo-code notation from the Appendix should suffice for your programs, but you
can use Java, Erlang or Promela provided you give your constructs the same semantics
as the question requires. The exact syntax of the programming notations you use is
not so important as long as the graders can understand the intended meaning. If you are
unsure, explain your notation.

– The correctness of some answers is clear from inspection. Other answers must be
justified, to help us judge them. If you think a question is incorrect, ambiguous, incon-
sistent, or incomplete, say so in your answer. Make the smallest changes you need to
the question, and state them. If you need assumptions beyond those given, state them.
If your solution only works under certain conditions, state the conditions.

– Be precise. Programs are mathematical objects, and discussions about them may be
formal or informal, but are best mathematically argued. Handwaving arguments will
get only partial credit. Unnecessarily complicated solutions will lose some points.

1



Question 1. Consider the following “Stop the loop” program.

integer n := 0
boolean flag := false

p q
p1: while flag = false q1: while flag = false
p2: n := 1 - n q2: if n=0

q3: flag := true

(Part a). Construct a scenario for which the program terminates. (2p)

(Part b). What are the possible values of n when the program terminates? Construct a scenario
for each. (2p)

(Part c). Construct a non-terminating scenario for the program. (2p)

(Part d). Is your non-terminating scenario fair? (2p)

Question 2. This question asks you to write programs to solve the producer-consumer problem. In each part
below, you must ensure that the producer does not try to add items to a full buffer, and that the
consumer does not try to take items from an empty one.

Here is the program structure if PC is a monitor that implements the buffer. We have not
shown the monitor itself, simply indicated that the buffer is a queue. Assume there is an op-
eration append (item, buffer) that adds an item to the end of the queue, and a function
head(buffer) that returns an item removed from the front of the queue.

finite queue of integer buffer := empty queue
any synchronisation structures you need

producer consumer
loop forever loop forever

p1: d := produce q1: d:= PC.get
p2: PC.put(d) q2: consume(d)

(Part a). Implement the monitor PC in the program above, with operations put(d) to add an
integer d to the buffer, and get() to return an integer removed from the buffer. (5p)

(Part b). Now rewrite your code using general semaphores instead of the monitor. The sin-
gle statements p2 and q1 above will now be replaced by pre-protocol—op—post-protocol se-
quences, where op is either append or head, and the protocols use the semaphores. (3p)

(Part c). If your monitor were to be implemented using semaphores, how many semaphores
would you need? What would each do? (1p)

(Part d). Re-do Part(a), using a protected object instead of a monitor. (3p)

2



Question 3. Here is the Manna-Pnueli algorithm to solve the critical section problem. It uses no synchroni-
sation or concurrency primitives other than the await commands in p3 and q3, and the atomic
if commands in p2 and q2. In the if commands, the test on the condition and the subsequent
corresponding assignment execute as one uninterruptible command. Interpret await C, where
C is a boolean, to mean “block until C”.

integer wantp=0, wantq=0
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: if wantq = -1 q2: if wantp = -1

then wantp := -1 then wantq := 1
else wantp := 1 else wantq := -1

p3: await (wantp 6= wantq) q3: await (wantp 6= -wantq)
p4: critical section q4: critical section
p5: wantp := 0 q5: wantq := 0

Below, with some entries missing (shown by dashes), is the state transition table (abbreviated
“table”) for an abbreviated version of the above program, skipping as usual the non-critical
sections p1 and q1, and the critical sections p4 and q4, leaving only the pre-protocols p2 and
p3, and q2 and q3, and the post-protocols p5 and q5.

We abbreviate wantp as wp and wantq as wq.

The left hand column lists the states (where p and q are, and the values of wp and wq). The
middle (resp. right) column gives the next state if p (resp. q) next makes a move. In states like
s2, either p or q can make the next move, but in states like s11, one or both of p and q may be
blocked. The program has a lot of states (17), but is actually quite simple.

State = (pi, qi, wp, wq) next state if p moves next state if q moves
s1 (p2, q2, 0, 0) s7 = (p3, q2, 1, 0) s2 =(p2, q3, 0, -1)
s2 (p2, q3, 0, -1) – s4 =(p2, q5, 0, -1))
s3 (p2, q3, 0, 1) s11 =(p3, q3, 1, 1) s5 =(p2, q5, 0, 1)
s4 (p2, q5, 0, -1) – s1 =(p2, q2, 0, 0)
s5 (p2, q5, 0, 1) s13 =(p3, q5, 1, 1) s1 =(p2, q2, 0, 0)
s6 (p3, q2, -1, 0) s14 =(p5, q2, -1, 0) s9 =(p3, q3, -1, 1)
s7 (p3, q2, 1, 0) s15 =(p5, q2, 1, 0) –
s8 – – s12 =(p3, q5, -1, -1)
s9 (p3, q3, -1, 1) s16 =(p5, q3, -1, 1) blocked
s10 – – blocked
s11 (p3, q3, 1, 1) blocked s13 =(p3, q5, 1, 1)
s12 (p3, q5, -1, -1) blocked s6 =(p3, q2, -1, 0)
s13 (p3, q5, 1, 1) blocked s7 =(p3, q2, 1, 0)
s14 (p5, q2, -1, 0) s1 =(p2, q2, 0, 0) –
s15 (p5, q2, 1, 0) s1 =(p2, q2, 0, 0) s17 =(p5, q3, 1, -1)
s16 – s3 =(p2, q3, 0, 1) –
s17 (p5, q3, 1, -1) s2 =(p2, q3, 0, -1) blocked

(Part a) Complete the table (we have left 10 entries blank). (5p)
(Part b) Prove from your table that the program ensures mutual exclusion. (1p)

3



(Part c) Prove from your table that the program does not deadlock. (1p)
(Part d) Prove that given fair scheduling, every p2-state (one where p is at p2) will lead at
some future point to a p5-state. Hint: Iteratively build a set S of all states that must lead to a
p5-state in zero, one or more moves. First, S := the set of all p5-states. E.g., s15 ∈ S. Next,
S := S∪{s9}, as s9 must lead to a p5-state. Then S := S∪{s9}, etc. This way, you will find
many states that must lead to S. List these states first. (3p)

For the remaining few states, show that every state on every path from a p2-state has a transition
into S via a move by p. A fair scheduler has to choose one of these moves at some point. (2p)

Question 4. Refer again to the program in Question 3, reproduced here for convenience.

integer wantp=0, wantq=0
p q

loop forever loop forever
p1: non-critical section q1: non-critical section
p2: if wantq = -1 q2: if wantp = -1

then wantp := -1 then wantq := 1
else wantp := 1 else wantq := -1

p3: await (wantp 6= wantq) q3: await (wantp 6= -wantq)
p4: critical section q4: critical section
p5: wantp := 0 q5: wantq := 0

In this question, you must argue from the program, not from the state transition table (though
you may seek inspiration from it!). You get full credit for correct reasoning, whether you use
formal logic, everyday language, or a mixture. Formulas and logical laws make your argument
concise and precise, and help you keep track of it. With everyday language, be careful not to be
fuzzy, or to mistake wishful thinking for proof.

The Appendix reviews briefly the notation of propositional logic and linear temporal logic.

In the sequel, we write p2 as a logical proposition to mean “process p is at p1 or p2”, p3 to
mean “process p is at p3”, and p5 to mean “process p is at p4 or p5”. We also use the state
names from Question 3.

Let M = ¬(p5∧ q5) and L = p2→ ♦p5 Your task is to prove mutex, �M, and liveness, �L,
assuming weak fairness: if a transition is continually enabled, it will take place at some time.

Let N ≡ (p2 iff (wantp= 0))∧ (q2 iff (wantq= 0)).

(Part a). Show that N is invariant, i.e., that �N holds for the start state s1. (2p)
(Part b). Show �M by induction. First show that M holds at the start state s1.

Then show that every transition preserves M. The only transitions that start with M and end with
¬M are those starting from p3 ∧ q5 or p5 ∧ q3. By symmetry, we need deal only with p5 ∧ q3.
Use Part a to show that in this state, each combination of wantp and wantq allows precisely one
of p and q to proceed. You will need to consider the two kinds of states that can transition to a
p5∧q3 state. (5p)

(Part c). Prove �L. Hint: Note that p can proceed from p2 to p3, by fairness. Then show
that if p is blocked, q must unblock it by an execution of q2 or q5. If p is unblocked but not
scheduled, then q will unblock p and block itself. (5p)

4



Question 5. Below is a program in pseudo-code with channels. NOTE: Sift declares a private channel called
q. Filter has two channels, both passed to it as parameters. Sift’s lone channel is also passed to
it as a parameter. The result is a growing network.

(Part a). Suppose we use the program with CAP=0, MAX = 100 and START = 2. Draw pictures
of the network as the computation takes its first few steps. What does the program print? (Hint:
it does not print primes). (6p)

(Part b). What happens if you set START=3? START=5? (2p)

(Part c). Does the program terminate? (1p)

(Part d). Does changing CAP have an effect? (1p)

(Part e). Change the program to print primes instead. (2p)

chan capacity(CAP) of integer qi;

proctype Ints(){
for n := START to MAX do qi ! n

}

proctype Filter(int p; chan qin; chan qout) {
int n;
do forever

n <= qin; //input a number from qin, store in n.
if n mod p = 0
then qout <= n //p divides n; output n on qout
else skip

od
}

proctype Sift(chan qin) {
int p;
chan capacity(CAP) of integer q;

p <= qin; //input a number from qin, store in p.
print p;
run Filter(p, qin, q);
run Sift (q)

}

init{run Sift(qi); run Ints()}

5



Question 6. On p. 7 is a program in pseudo-code that uses the Linda tuplespace operations remove, read
and post. (See Appendix A.1, and Appendix A.3). The program finds the prime numbers up to
MAX. The square root of MAX is supplied as SQRT. The program uses several kinds of integer
tokens in the space, with the labels ’cand’ and so on. At the end, the prime numbers are those
remaining in the space as (’cand’, 2), (’cand’, 17) and so on. Your task is to explain how
the program works.

We use two programming conveniences.

1 remove and read actions use eval(n) to mean the value of variable n. Suppose n=13.
Then the pattern read(’start’, n) will match the tuple (’start’, 14), resetting n to
14, whereas read(’start’, eval(n)) will only match the tuple (’start’, 13).

2 read and remove actions are here allowed to attach a timeout clause, a sequence of
statements that must end with goto label. If there are no tuples that match the given
pattern, the process executes the code between timeout and goto, and then jumps to the
statement label.

(Part a). How are the tuples containing ’start’ and ’done’ used? (3p)

(Part b). Why not have (’start’) and (’done’) tokens as singletons, instead of pairs like
(start, 2) and (done, 20) and so on? (3p)

(Part c). How does the program terminate? (3p)

(Part d). Can you tidy up the termination so that no process is left hanging? (3p)

6



#define MAX 45, SQRT 7;
type (’cand’, int), (’divisor’, int), (’curr’, int), (’start’, int), (’done’, int);

proctype Worker(int n) {
int curr;

do forever
remove (’start’, eval(n));
read(’curr’, curr);
if n = curr then skip
else if n mod curr = 0 //curr divides n

then remove(’cand’, eval(n));
break; //out of do loop

fi //else skip
fi;
post(’done’, n);

od;
post(’done’, n);
do forever

remove (’start’, eval(n));
post(’done’, n);

od
}

proctype Master(){
int curr, i;
do forever

remove(’divisor’, curr) timeout goto alldone;
post(’curr’, curr);
for i:= 2 to MAX do

post(’start’, i);
for i:= 2 to MAX do

remove(’done’, i);
remove (’curr’, curr);

od;
alldone:
}

init { int i;
for i:= 2 to MAX do

post(’cand’, i);
for i:= 2 to SQRT do

post(’divisor’, i);
for i:= 2 to MAX do

run Worker(i);
run Master()

}

7



——-END of QUESTION PAPER——

8



A Appendix: Pseudo-code, LTL and Linda notations

A.1 SUMMARY OF BEN-ARI’S PSEUDO-CODE NOTATION

1. Global variables are declared centred at the top of the program.

Data declarations are of the form integer i := 1 or boolean b := true, giving type, vari-
able name, and initial value, if any. Assignment is written := also in executable statements.
Arrays are declared giving the element type, the index range, the name of the array and the
initial values. E.g., integer array [1..n] counts := [0, ..., 0].

2. The statements of the processes are often in columns headed by the names of the process. If
several processes p(i) have the same code, parameterised by i, they are given in one column.
Indentation indicates sub-statements of compound statements.

3. All commands are numbered, but not control flow directions such as loop forever and repeat.
If a continuation line is needed, it is left un-numbered or numbered by an underscore p . Num-
bered statements are atomic. Assignments and expression evaluations are atomic.

4. The statement await b is equivalent to either block until C or to while not b do nothing,
a busy wait. Which interpretation is meant will be pointed out in any question using await. Un-
der the first interpretation, the system may deadlock (everyone is blocked); under the second,
the system may livelock (everyone busy-waits). The only difference is in CPU-cycles. Both
states show mutual impediment to progress, or circular waiting.

5. For channels, ch => x means the value of the message received from the channel ch is assigned
to the variable x. and ch <= x means that the value of the variable x is sent on the channel ch.

6. A scenario is a list of the labels of the statements in the order of execution. With synchronous
channels, sender and receiver act together, so show both statements as a pair being a single
move in the scenario.

EXTENSION OF BEN-ARI’S PSEUDO-CODE NOTATION

1. You can explicitly declare processes by a line of the kind proctype p(integer i) giving the
name of the process and its parameters. Explicit commands like run p(5); run p(6) are
used to run processes, in this case to start process p with parameter 5, and then start another
instance of p with parameter 6. An explicit init process starts the program.

These extensions give new expressive power. The run command means the number of processes
in a program can change during execution. Processes can pass channels as parameters. This
allows the network of channels between processes to change dynamically.

2. We extend Ben-Ari’s notation for channels, allowing channel capacity(n) of boolean
forks[5]. This declares an array of channels, fork[0] through fork[4], each a channel
of buffer capacity n, carrying boolean values. So n=0 specifies a synchronous channel, and n=5
specifies an asynchronous channel with buffering capacity 5. For theoretical discussion, we can
also permit n to be infinite. The capacity declaration capacity(0) can be dropped, (i.e. in
that case, assume n=0 and therefore synchrony).

3. Input commands are allowed to attach a timeout clause, a sequence of statements that must end
with goto label. If the channel is empty when an input command runs, the process executes the
code between timeout and goto, and then jumps to the statement label.

9



A.2 LOGIC

1. The symbols used here for the operators of propositional logic are: ¬ for “not”, ∨ for “or”, ∧ for
“and”, and→ for “implies”, while p iff q (i.e., p if and only if q) is a convenient abbreviation
for (p→ q)∧ (q→ p) . These have the obvious meanings, but two differ from what might be
your interpretation of the name. Note that p∨ q (“p or q”) is false iff both p and q are false.
This is an “inclusive or”, so p∨ q is true if both p and q are true. Also, note that p→ q (“p
implies q”) is false iff p is true and q is false. In particular, this means p→ q is true if p is false.

2. A proposition such as q2 (process q is at label q2) is true of a state s iff process q is at q2 in s.

3. We use Linear Temporal Logic (LTL), which is propositional logic with two added operators,
� and ♦. A formula φ of LTL holds for state s (or, s satisfies φ, written s |= φ) if every path
from s satisfies φ.

A path is a possible future of the system, a possibly infinite sequence of states, each reachable
from the previous state in the path.

A path π satisfies �φ (written π |=�φ) if φ is true of the first state of π, and for all subsequent
states in π. The path π satisfies ♦φ (written π |= ♦φ) if φ is true of some state in π.

Note that � and ♦ are duals:

�φ≡ ¬♦¬φ and ♦φ≡ ¬�¬φ.

A.3 LINDA

In Linda programs, processes communicate via tuples posted in a space. The first element of a tuple
is often a constant string, saying what kind of tuple it is. Processes interact with the space through
three kinds of atomic actions.

post(t) Here t is a tuple 〈x1,x2, ..〉, where the xi are constants or values of variables. post(t) posts
t in the space, and unblocks an arbitrary process among those waiting for a tuple of this pattern.

remove(x1,x2, ..) Here the parameters must be variables or constants. The command remove(x1,x2, ..)
removes a tuple 〈x1,x2, ..〉 that matches the pattern of the parameters, and assigns the tuple val-
ues to the variable parameters. If no matching tuple exists, the process is blocked. If there are
several matching tuples, an arbitrary one is removed.

read(x1,x2, ..) Like remove(x1,x2, ..), but leaves the tuple in the space.

We allow two extensions of the input constructs remove and read:

1. remove and read actions can use eval(n) to mean the value of variable n. Suppose n=13.
Then the pattern read(’start’, n) will match the tuple (’start’, 14), resetting the value
of n to 14, whereas read(’start’, eval(n)) will only match the tuple (’start’, 13).

2. To remove and read actions can be attached a timeout clause, a sequence of statements that
must end with goto label. If there are no tuples that match the given pattern, the process
executes the code between timeout and goto, and then jumps to the statement label.

——-END of APPENDIX——

10


