
Chalmers | GÖTEBORGS UNIVERSITET

Alejandro Russo, Computer Science and Engineering

Concurrent Programming TDA382

Friday, March 14, 14:00 PM.

(including example solutions to programming problems)

Alejandro Russo, tel. 0705 110896

• The maximum amount of points you can score on the exam: 68 points. To pass the course, you
need to pass each lab, and get at least 24 points on the exam.

The grade for the exam is as follows:

Chalmers: grade 3: 24 - 38 points, grade 4: 39 - 53 points, grade 5: 54 - 68 points.
GU: Godkänd 24-53 points, Väl godkänd 54-68 points

The grade for the whole course is based on the points obtained in the exam and the labs. More
specifically, the course grade (exam + lab points) is determined as follows.

Chalmers: grade 3: 40 - 59 points, grade 4: 60 - 79 points, grade 5: 80 - 100 points.
GU: Godkänd if passed the labs and get Godkänd in the exam. Väl godkänd is you passed the
labs and got Väl godkänd in the exam.

• Results: within 21 days.

• Permitted materials (Hjälpmedel): Dictionary (Ordlista/ordbok)

• Notes:

– Read through the paper first and plan your time.
– Answers preferably in English, some assistants might not read Swedish yet.
– If a question does not give you all the details you need, you may make reasonable assump-

tions. Your assumptions must be clearly stated. If your solution only works under certain
conditions, state them.

– Start each of the questions on a new page.
– The exact syntax of each programming language you are going to use is not so important

as long as the graders can understand the intended meaning. If you are unsure just put in
an explanation of your notation.

– Points will be deducted for solutions which are unnecessarily complicated.
– As a recommendation, consider spending around 45 minutes per exercise. However, this

is only a recommendation.
– To see your exam:
∗ April 9th 2014, 12:15-13:00, room 5128 (5th floor), EDIT building.
∗ April 11th 2014, 12:15-13:00, room 5128 (5th floor), EDIT building.

1

Question 1. The Problem Even though this winter is not very snowy this year, still there is a considerable
amount of people who have decided to go skiing. When we go there, it is very common to use
a cable car to go up to the mountain. There are quite a lot of different types of cable cars, for
the exercise we assume one which has the following features:

• There is only one car in the line.

• Skiers only take it from the bottom to the top. They go down skiing!

• The car is not at the bottom initially. So, it has to get to the bottom station and wait for the
skiers.

• The car has space for N skiers, where N is a positive natural number.

• Skiers can get in the cable car at the same time. It is important that a beginner skier (who
takes quite a lot of time to get in) does not slow down another more proficient skiers when
they want to get in.

• The cable car only departs when is full of skiers.

• We assume N ∗P skiers per day, where P is a positive natural number.

Your assignment

a) You have to implement the simulation of a cable car used by skiers to go up the top of the
mountain. The cable car have to wait at the bottom of the mountain until it is full of skiers.
Then it goes up and once it reaches the top the skiers can get off. You can assume that the
skiers get off instantly from the cable car once it reaches the top. The cable car goes down
when is empty. (8p)

b) Extend the previous solution without the assumption that the skiers get instantly off the cable
car. Therefore, the cable car has to wait until all the skiers get off before it goes down. It
is also possible that the beginner skiers also take more time for getting off and it should not
interfere when the more proficient skiers want to get of. (4p)

To get full points your solution must fulfill the following criteria:

• You must use Java

• You must use semaphores for synchronization or mutual exclusion. No other synchroniza-
tion constructs are allowed.

• Every skier in the simulation must execute the same code.

1. import java.util.concurrent.Semaphore;

public class Skiers {

static final int CAPACITY = 3;
static final int ROUNDS_PER_DAY = 3;
static final int SKIERS = CAPACITY*ROUNDS_PER_DAY;

//--------- SECTION a) -----------------
Semaphore waitingForPassager;
Semaphore boarding;
//--------- SECTION a) -----------------

2

//--------- SECTION b) -----------------
Semaphore wait_to_getoff;
Semaphore gettingOff;
//--------- SECTION b) -----------------

public static void main(String[] args) {
new Skiers();

}

public Skiers() {
waitingForPassager = new Semaphore(0);
boarding = new Semaphore(0);
wait_to_getoff = new Semaphore(0);
gettingOff = new Semaphore(0);

CableCar cableCar = new CableCar(CAPACITY);
cableCar.start();

for(int i=0; i<SKIERS; i++){
new Skier(i).start();

}

}

public class Skier extends Thread {
private int id;

public Skier(int id) {
this.id = id;

}

public void run(){
try{

//--------- SECTION a) -----------------
System.out.println("Skier " + id + ": Waiting for the cable car! \n");
//Notifying that I am in the station
waitingForPassager.release();

//Waiting for my turn to get in the cable car
boarding.acquire();

System.out.println("Skier " + id + ": In the cable car! :) \n");
//--------- SECTION a) -----------------

//--------- SECTION b) -----------------
//Waiting in the cable car
wait_to_getoff.acquire();

//Simulating the time they spend getting off
int random = (int)(Math.random() * (5000 - 1000));

3

System.out.println("Skier " + id + ": It is going to take me "
+ random +" milisec to get off \n");

Thread.sleep(random);

//Notifying to the cable car that I am outside
gettingOff.release();
//--------- SECTION b) -----------------

System.out.println("Skier " + id
+ ": Finally at the top! \n");

} catch(InterruptedException e){
System.out.println("Exception: " + e + " \n");

}
}

}

public class CableCar extends Thread {

private int roundsPerDay;

public CableCar(int roundsToday) {
roundsPerDay = roundsToday;

}

public void run() {
try {

for (int j = roundsPerDay; j>0; j--) {

System.out.println("Cable car: At the bottom station\n");
Thread.sleep(1000);

//--------- SECTION a) -----------------

//Waiting until there are CAPACITY skiers
for(int i=0; i<CAPACITY; i++){

waitingForPassager.acquire();
}
//Allowing skiers to get in
for(int i=0; i<CAPACITY; i++){

boarding.release();
}
//--------- SECTION a) -----------------

Thread.sleep(1000);
System.out.println("Cable car: Going up !\n");

4

//--------- SECTION b) -----------------
for(int i=0; i<CAPACITY; i++){

//Notifying that they can get off
wait_to_getoff.release();

}

for(int i=0; i<CAPACITY; i++){
//Waiting until everyone gets off
gettingOff.acquire();

}
//--------- SECTION b) -----------------

System.out.println("Cable car: Everyone is off, going back\n");

}
} catch(InterruptedException e){

System.out.println("Exception: " + e + " \n");
}

}

}

}

Question 2. Consider a savings account shared by several people. Each person associated with the account
may deposit or withdraw money from it. The current balance in the account is the sum of all
deposits to date less the sum of all withdrawals to date. Clearly, the balance must never become
negative. A person making a deposit never has to delay (except for mutual exclusion), but a
withdrawal has to wait until there are sufficient funds.

Your assignment You are giving the task to write up a Java class to implement shared accounts.
More specifically, you need to provide the following interface.

class SharedSavingsAccount {
public SharedSavingsAccount(long initialBalance) ;
public void deposit(int amount) ;
public withdraw(int amount) ;

}

Please, do not care about fairness in your solution. You should use Java 5 monitors as synchro-
nization primitive. Here is a short reference of what you will need from java.util.concurrent.locks.

class ReentrantLock {
public ReentrantLock();
public Condition newCondition();
public void lock();
public void unlock();

}
class Condition {
public void await();
public void signal();

5

public void signalAll();
}

(10p)

import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;

class SharedSavingsAccount {

private final Lock lock = new ReentrantLock();
private final Condition sufficientBalance = lock.newCondition();

protected long balance;

public void SharedSavingsAccount(long initialBalance) {
balance = initialBalance;

}

public void deposit(int amount) {
lock.lock() ;

balance += amount;

sufficientBalance.signalAll() ;

lock.unlock() ;
}

public void withdraw(int amount) throws InterruptedException {
lock.lock() ;

while (amount > balance)
sufficientBalance.await();

balance -= amount;

lock.unlock() ;
}

}

Question 3. The Problem We introduce here a simplified version of a common concurrent pattern used
in practice. Consider a client-server architecture implemented in Erlang, where there is one
process (the server) that serves requests for other processes in the system (the clients). These
requests involve some computation that may take some time to complete. In the simplest version
of this architecture, the clients make requests to the server by sending a message to the server
process, which will sit in its mailbox until the server is ready to process it.

This model is convenient because it is easy to implement. However, it is possible for clients
to send more requests than the server can handle at a given time, which will fill its mailbox,
possibly exceeding the memory capacity of the server. We will refer to this situation as message
flooding. As a consequence of message flooding, the server’s performance can be severely
hampered.

6

Figure 1: Client-server architecture with a message proxy

Your assignment In this assignment, your task will be to implement a form of mitigation for
message flooding, which consists in a proxy process for the server, i.e. a process that serves as an
intermediary between the clients and the server. The clients should send messages to the proxy
process instead of to the server. The proxy process will forward messages from the clients to
the server, as long as the total number of active requests does not exceed a fixed amount, given
when the proxy starts. Once this bound is overstepped, all subsequent messages are dropped
until the server has reduced its load. Dropping these messages mitigates the message-flooding
problem, since they will not have to be retained in the server’s memory.

To implement this functionality, we must assume that the server sends the atom ready_to_serve

to the proxy, whenever a request has been fulfilled. The proxy must receive these atoms, using
them to maintain a count of the number of active requests in the server. A request counts as
active if it has been already sent to the server, but no corresponding ready_to_serve atom has
been received by the proxy. Figure 1 shows a simple diagram of the proposed architecture. Note
that the replies from the server to the clients do not go through the proxy, so you do not have to
worry about them.

You are required to write the code of the proxy process in a function called proxy, and assume
that the server and clients have already been implemented. In particular, you can assume that
the server knows the process id of the proxy process (it somehow keeps it in its own state), so
the code for serving a request will be of the form

server(ProxyPid) ->
...
receive

...
Request -> serve_request(Request),

ProxyPid ! ready_to_serve,
server(ProxyPid)

end.

Symbol ... denotes some Erlang code which is not relevant for the point we try to make.

Your proxy function should take three arguments, i.e., proxy(Server,C, MaxReq), where Server
is the process id of the server process; C is the number of requests being handle by the server;
and MaxReq is the maximum number of requests that can be served by the server at any given
time. (12p)

To get full points your solution must fulfill the following criteria:

7

• You must use Erlang

• You must use Erlang’s message passing model. No other synchronization constructs are
allowed.

Hint You might consider to use selective receive, i.e., using receive with the when guard.

-module(bounded).

-export([bounded_server/2, run/0]).

%%%
%%% Load balancer
%%%

% This process acts as a proxy for the server.
%
% The load balancer keeps track of the current number of requests C,
% and when this number becomes Max, it starts dropping messages until
% the Server informs it that it is ready to take more requests.
proxy(Server, C, Max) ->

receive
% decrements the counter of active requests if > 0
ready_to_serve ->

io:format("˜p ready to serve a new request\n", [Server]),
proxy(Server, if C > 0 -> C-1; true -> 0 end, Max);

% prints out debugging information (counter and max)
debug -> io:format("dbg: ˜p ˜p˜n", [C, Max]),

proxy(Server, C, Max);

% A message must be forwarded to the server if the number of
% active requests is between 0 and Max
Msg when ((C >= 0) and (C < Max)) ->

Server ! Msg,
proxy(Server, C+1, Max);

% We only reach this case if there are too many active
% requets, so we drop this message
Msg -> io:format("message dropped: ˜p˜n", [Msg]),

proxy(Server, C, Max)

end.

Question 4. In this exercise, we consider how to handle an unbounded buffer in Erlang. To use the buffer,
processes have access to the following API.

put(Buffer, Item)
get(Buffer)

The argument Buffer denotes the process id (Pid) of the process managing the unbounded
buffer.

To put an element in the buffer, processes call put(Buffer, Item), where Item is the value to
place in the front of the buffer. This function always succeed, i.e., it never blocks the caller

8

process. Function get(Buffer) extracts the last element from the buffer. If the buffer is empty,
the caller must block until elements in the buffer are available.

Your assignment

a) You have to implement the process handling the unbounded buffer as well as the functions
put and get. (12p)

% Never blocks
put(Buffer, Item) ->

Buffer ! {put, Item},
ok.

% Blocks when empty
get(Buffer) ->

Buffer ! {get, self()},
receive

X -> X
end.

% Main server loop (part a)
server({Buffer, Requests}) ->

receive
{put, Item} ->

server(send(Buffer ++ [Item], Requests)) ;
{get, Pid} ->

server(send(Buffer, Requests ++ [Pid]))
end.

send([], Requests) -> {[], Requests} ;

send(Buffer, []) -> {Buffer, []} ;

send([Item|Buffer], [Pid|Requests]) ->
Pid ! Item,
{Buffer, Requests}.

b) Extend the previous solution with the following variation: get calls are only serviced when
the number of items in the buffer is exactly equal to the number of waiting get calls. (4p)

server({Buffer, Requests}) ->
receive

{put, Item} ->
server(sendB(Buffer ++ [Item], Requests)) ;

{get, Pid} ->
server(sendB(Buffer, Requests ++ [Pid]))

end.

sendB(Buffer, Requests) ->
if

length(Buffer) == length(Requests) ->
[Pid ! Item || {Item, Pid} <- lists:zip(Buffer, Requests)],
{[],[]} ;

true ->

9

{Buffer,Requests}
end.

To get full points your solution must fulfill the following criteria:

• You must use Erlang

• You must use Erlang’s message passing model. No other synchronization constructs are
allowed.

Question 5. Answer the following questions. You should always justify your reply when answering a
Yes/No question. Make it short and to the point.

a) In a Java 5 monitor, is it guarantee that the interaction between the boundary queue and the
queues associated with conditional variables provides fairness for threads? (2p)

b) Why workers are useful? (2p)

c) In which situations unique references, created by calling make_ref(), are needed in Erlang?
(2p)

d) Describe two differences between messages passing and Linda. (2p)

Question 6. Deadlock is a classic problem in concurrent systems. Deadlock is often explained using the
Dining Philosopher’s Problem. In this Java code snippet, each fork/chopstick is represented by
a lock (binary semaphore):

int left = i ;
int right = (i+1)%MAX;
while (true) {

try {
chops[left].acquire() ;
chops[right].acquire() ;

} catch (InterruptedException e) {}

chops[left].release() ;
chops[right].release() ;

}

a) Describe one systematic manner to avoid deadlock (We saw more than one in the course).
(5p)

b) Describe minor modifications to the above code such that philosophers can be fed not only
safely, but also deadlock-free. (5p)

10

