Chalmers | GOTEBORGS UNIVERSITET
K. V. S. Prasad, Computer Science and Engineering

Concurrent Programming TDA382/DIT390
Thursday 24 QOctober 2013, 14:00 to 18:00.

K. V. 5. Prasad, tel. 0736 30 28 22

o Maximum you can score on the exam: 72 points. This paper has four pages, with seven ques-
tions, each carrying 12 points. Choose any six guestions to answer. If you attempt all seven
questions, we will ignore the question on which you score the least points.

To pass the course, you need to pass each lab, and get at least 24 points on the exam. Further
requirements for grades (Betygsgrénser) are as follows:

CTH (total on exam + labs): grade 3: 40 - 59 pis, grade 4: 60 - 79 pts, grade 5: 80 - 104 pts.
GU (on exam): Godkind 24-53 pts, Vil godkind 54-72 pts

¢ Results: within 21 days.

+ Permitted materials (Hjiilpmedel):
— Dictionary (Ordlista/ordbok)

o Notes: PLEASE READ THESE

— Time planning: you have 40 minutes for each of the six questions you wiil answer. Do not
get stuck for more time than you can afford on any question or part.

Start each question on a new page.
- Answers in English only, please. Qur graders do not read Swedish.
~ A SUMMARY follows of Ben-Ari’s pseudo-code notation, used in this question paper.

- Ben-Ari’s pseudo-code should suffice for your programs, but you can use Java, JR, or
Erlang if you think they are appropriate. The exact syntax of the programming notations
you use is not so important as long as the graders can understand the intended meaning. If
you are unsure, add an explanation of your notation,

~ Don’t just write down answers; say why they are correct. This explanation is not needed
in cases where it is clear how to check that the answer is correct.

- If a question does not give you all the details you need, make reasonable assumptions,
but state them clearly. If your solution only works under certain conditions, state the
conditions.

— Be as precise as you can. Programs are mathematical objects, and discussions about them
may be formal or informal, but are best mathematically argued. Handwaving arguments
will get only partial credit. Unnecessarily complicated solutions will lose some points.

~ DONT PANIC!



SUMMARY OF BEN-ART’'S PSEUDO-CODE NOTATION

Global variables are declared centred at the top of the program.
Data declarations are of the form integer 1 := 1 orboclean b '= true , givingtype, variable

name, and initial value, if any. Assignment is writlen := also in executable statements, Arrays are
declared giving the element type, the index range, the name of the array and the initial values. E.g.,
integer array [l..n] counts := [0, ..., 0]

Next, the statements of the processes, often in iwo columns headed by the names of the processes.
If several processes p{i} have the same code, parameterised by i, they are given in one column,

So in Question 1, p and g are processes that the main program runs in paraliel. The declaration of
1 is global.

Numbered statements are atomic. If a continuation line is needed, it is left un-numbered or num-

bered by an underscore p-. Thus loop forever |, repeat and so on are not numbered. Assignments
and expression evaluations are atomic.

Indentation indicates the substatements of compound statements.

The synchronisation statement await b is equivalent to while not b do nothing . This may
be literally true in machine level code, but at higher level, think of await as a sleeping version of the
busy loop.

For channels, ch => x means the value of the message received from the channel ch is assigned
to the variable x. and ch <= & means that the value of the expression e is sent on the channel ch.
When asked for a scenario, just list the labels of the statements in the order of execution.

—END of SUMMARY——

Question 1. (Part a) Consider the following program:

integer n ;=1
P q
pl: whilen <1 ql: whilen>0
p2: n:=uo+l | g2 n = n-]

Construct scenarios in which

(1) process p above loops exactly three times, (3p)
{2) both processes p and q above loop infinitely often. (3p)
{Part b) Define the operations on a binary semaphore. (3p)
{Part c}) What are condition variables in monitors? Why are they needed? (3p)

Question 2. Consider the following attempt at solving the critical section problem.

boolean wantp = false; wantq := false
p 9
loop forever loop forever
pl:  non-critical section | ql: non-critical section
p2: await wantq = false | q2:  await wantp = false

p3: wanip = true q3: wantq = true

pdt  critical section qd: critical section

p5:  wantp = false q5: wantqg = false
(Part a) Construct the state diagram for an abbreviated version of this program, or as much of
it as needed to show that the program cannot ensure mutual exclusion. {6p)
(Part b) Prove informally (but precisely) that the program does not deadlock. (6p)



Question 3.

Question 4.

Question 5.

(Part a) A small construction company builds only one house at a time, and must sell it before
they can start another. So their employees (masons, plumbers, salesmen, etc.), must all finish
their work on the present house before anyone can start on the next house. If any worker needs
more fime, their colleagues just have to wait till they are done. (Such coordination of activity in
rounds is called barrier synchronisation).

Write a monitor 1o help the employees coordinate their activities. (8pj

(Part b). If you have n CPU’s, barrier synchronisation can be used to speed up the hunt for
the root r of a monotonically increasing function f. Suppose we know that f(ap) < 0 and
Flays1) > 0. Then we know that the r lies between ag and g, ;. For the first round of the hunt,
spiit the interval [ap, @, into n+4 1 bits [a;,a;1] for i = 0..n, and evaluate f in parallel at the
n points ¢;,1 = 1..n. Then find 7 such that f(a;) < 0 and f(q;.1) > 0, and the next round looks

recursively in [aq,@;11].
First, assumne that the time to compute f(x} is independent of x. In what way is this application
different from that of Part a? (2p)

Now assume that the time to compute f{x) depends on x. Can you use this to speed up the hunt
for the root? Cp)

A railway network consists of a set of cities, numbered 1 through N, and a set of tracks. Each
track (#1,12) connects exactly one city, nl, to exactly one city, #2.

Write a message-passing program using channels to take a railway network of N > 2 cities
and find if il allows travel from city & to city /. If it can, your program should print out “ok”,
otherwise it may either loop or hang or print out "no path”,

Hint (Use if you wish. You can also use your own method). Use channels ¢, where i = 1..N, to
represent the cities, and let each track (i, §) be represented by a process p(/, j).

(Part a) Write your program, including all the processes it needs. {6p)
(Part b) Modify your program to print out the length of the first path it finds (i.e., the number
of tracks i it). For any other paths it finds, it should print out the length if it is smaller than any
length found so far. {4p)

{Part ¢) Will your program work with both synchronous and asynchronous channels? (Zp)

Write a Linda program to print out the prime numbers between 2 and N. The primes need not
be printed out in ascending order. Assuine every process you create runs on its own CPU. You
can use as many {identical) CPU’s as you wish. Your goal is to find the primes in the shortest
possible time. The program should terminate cleanly with each process terminating.

You may start with a Linda space containing the tuples you need (i.e., you don’t have to write a
process to generate these tuples, just say what tuples you are starting with).

Hints (Use if you wish. You can also use your own method):

1. Once we discover that ¢ is a composite number, it is a waste of time to again check if any
integer n divides c.

2. You may find it useful to process candidate primes in sequence. This can be done by starting
with the pairs (2,3), (3.4), (4.5} ... (N-1, N}, (N, "top’). These form in effect a linked list. Filter
processes can work their way up this list. When a process discovers that 4 is not a prime, the
start of the list is changed to (2,3}, (3,5) .. and so on. (12p



Question 6.

Question 7.

(Part a) A concurrent mergesort algorithm recursively divides an array into halves, sorts the
two halves concurrently and merges the results together. Here is a program for one step of the
recursion, using two binary semaphores, S1 and S2.

integer array A
binary semaphore S1 := (0, 0), S2 := (0, 0)
sortl sort2 merge
pl: sort Isthalf of A | ql: sort 2nd halfof A | rl: wait(S1)
p2: signal(S1) q2: signal(S2) r2:  wait(S2)
r3: merge halves of A
Modify the above program to use a single general semaphore instead of S1 and S2. (3p)

(Part b) Five philosophers sit in a circle, each executing an infinite think - eat” loop. They
have five forks, one each between every pair of philosophers. To eat, each philosopher must
wait till (s)he has both the forks to their right and left. The problem is to program a fork sharing
protocol that avoids deadlock and starvation, while allowing maximum parallelism. Only the
availability of forks, no other rule, should detain a philosopher when they wish to eat.

(1) Solve the dining philosophers problem using separate processes for each philosopher and a

protected object for the forks. (5p)
(2) What invariants hold for your program? (2p)
(3) What do you need to assume to avoid starvation? (2p)

Here is Peterson’s algorithm to solve the critical section problem without special instructions.

boolean wantp := false; wantq := false
integer last := 1

p q

loop forever loop forever
pl: non-critical section ql: non-critical section
p2: wantp :=true q2: wantq :=true
p3: last:=1 q3: last:=2
p4: await wantq = false or last =2 | q4:  await wantp = false or last=1
p5:  critical section g5:  critical section
p6:  wantp := false g6:  wantq := false

(Part a). Show that
(p4 A g5) — (wantq Alast = 1)
is invariant. Then by symmetry, it follows that so is
(pS A q4) — (wantp Alast = 2).
Use these two formulae to show that mutual exclusion holds. (6p)
(Part b). Prove the following formulae:

pd AO-p5 — OO (wantg A (last # 2))
O0(—wantq) v O (last =2)
(6p)

——END of QUESTION PAPER——-



