
7/22/22, 10:23 AM Databases (TDA357/DIT621)

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-2020-03.html 1/7

Databases (TDA357/DIT621)
Home Exam on 20 March 2020 at 8:30-12:30

Department of Computer Science and Engineering, Chalmers University of Technology & University of
Gothenburg.

Examiner: Thomas Hallgren, will be answering questions via email, Inbox in Canvas or Direct Messages in the
course Slack (if you haven’t joined Slack yet, there is an invitation to slack in this announcement).

Results: Will be published within three weeks from exam date.

Maximum number of points: 60.

Grade limits for Chalmers: 24p for 3, 36p for 4, 48p for 5.

Grade limits for GU: 24p for G, 42p for VG.

Help material: this is a home exam, you can use any help material.

Instructions

You can answer in English or Swedish.

Indicate clearly if you make any assumptions that are not given in the question. In particular: in SQL questions,
use standard SQL or PostgreSQL. If you use any other variant (such as Oracle or MySQL), say this; but full points
are not guaranteed since this may change the nature of the question.

Submitting answers

The exam is made available as an assignment in Canvas and you should submit your answers in Canvas.
Write your answers in files that you upload.

If you write the answers on your computer: submit them in .txt, .sql, .pdf or .docx files.

If you use pen and paper: scan your answers or take photos of them and submit them as .pdf or .jpg files.
Take photos in good light, and if possible, use an app that has a document scanning mode (e.g. the Notes
app in iOS) to straighten the photos and adjust the brightness.

Clearly mark the answer to each question so that they are easy to find.

You can write all answers in one file, or put the answer to each question in a separate file. If you submit
many files, include the question number in the file name, e.g. Q1.pdf, Q2.txt, Q3.txt, etc.

You can submit multiple times, but only the last submission will be graded.

https://chalmers.instructure.com/conversations
https://chalmers.instructure.com/courses/8724/discussion_topics/14781

7/22/22, 10:23 AM Databases (TDA357/DIT621)

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-2020-03.html 2/7

1 Entity-Relationship Modelling (10p)

1.1 E-R diagram (5p)

Draw an E-R diagram that describes the following domain:

A book is identified by its ISBN number. A books also has a title and year of publication.

An author has a name and a year of birth. Both the name and the year of birth are needed to uniquely identify an
author.

A book is written by one or more authors.

A book consists of several chapters. Each chapter has a number and a chapter title. Chapter numbers are unique
within a book.

A chapter has an optional chapter author (i.e. there is at most one chapter author for each chapter).

Clarification at 9:51: domain descriptions often are a bit vague. If you need to make any assumptions, write them down
in your answer.

1.2 From E-R model to database schema (5p)

Translate this E-R diagram into a relational schema, including keys and constraints.

Title

TvSeries TvEpisode

yeartitle

IsEpisodeOf

season episode

Clarification at 9:18: The triangles in the ER-diagram are ISA relationships.

7/22/22, 10:23 AM Databases (TDA357/DIT621)

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-2020-03.html 3/7

2 Functional Dependencies (8p)

Consider the relationship Bookings(course,name,timeslot,lab,seats), for bookings of courses in computer labs:

course name timeslot lab seats

TDA357 Databases Monday 10-12 ED3507 30

TDA357 Databases Friday 13-15 ED3507 30

TDA555 Intro to FP Monday 10-12 ED3354 16

TDA555 Intro to FP Monday 10-12 ED3358 16

TDA555 Intro to FP Friday 15-17 ED3507 30

2.1 Redundancies and inconsistencies (2p)

There is some redundant information in the above table, as evidenced by the repeated values in the name and seats
columns.

Give an example of an SQL UPDATE statement that updates the number of seats in ED3507 to 40, without introducing any
inconsistency.

Also give an example of a SQL UPDATE statement that introduces an inconsistency in the table.

2.2 Dependencies and keys (3p)

Write down the functional dependencies and the possible keys. In addition to the redundancies, consider also that it
shouldn’t be possible to book more than one course in the same lab at the same time.

2.3 Normalization (3p)

Which functional dependencies are BCNF violations? Show the result of BCNF decomposition, i.e. the relational
schemas with keys and constraints, and the contents resulting tables.

7/22/22, 10:23 AM Databases (TDA357/DIT621)

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-2020-03.html 4/7

3 SQL queries (12p)

Below is the schema for a database of movies, movie stars (actors, actresses, etc) and movie ratings.

Movies(_title,releaseYear)

MovieStars(_name,birthYear)

AppearsIn(_name,_title)
 name -> MovieStars(name)
 title -> Movie(title)

Ratings(_title,averageRating,numberOfVotes)
 title -> Movies(title)

Correction at 9:42: name -> Stars(name) was corrected to name -> MovieStars(name)

Correction after the exam: MoviesStars to MovieStars

3.1 (2p)

Write an SQL query that lists the titles of all movies with an average rating of at least 8.5 and at least 10000 votes.

3.2 (3p)

Write an SQL query that lists the movies (title and release year) in which both Max von Sydow and Angela Lansbury
have appeared.

3.3 (3p)

Write an SQL query that lists the names of movie stars that were very young (less than 16 years old) when they first
appeared in a movie.

3.4 (4p)

Write an SQL query that for each year ≥1970 lists highest rated movie released in that year. Only consider movies with at
least 10000 votes. If more than one movie received the same (highest) rating in the same year, include them all in the
listing.

Part of the result might look something like this:

 year | rating | title
------+--------+---
 …
 1998 | 8.6 | Saving Private Ryan
 1999 | 8.8 | Fight Club
 2000 | 8.5 | Gladiator
 2001 | 8.8 | The Lord of the Rings: The Fellowship of the Ring
 2002 | 8.7 | The Lord of the Rings: The Two Towers
 2003 | 8.9 | The Lord of the Rings: The Return of the King
 2004 | 8.5 | Black Friday
 2004 | 8.5 | The Lizard
 2005 | 8.7 | Earthlings
 …

7/22/22, 10:23 AM Databases (TDA357/DIT621)

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-2020-03.html 5/7

4 Algebra and theory (8p)

4.1 (4p)

Consider again the database schema from question 3. Write a relational algebra expression that calculates the set of
movie titles, paired with their average rating, in which Tom Cruise has appeared. The result set might include the
following movies:

averageRating title

7 Jack Reacher

7 Oblivion

7.9 Edge of Tomorrow

7.4 Mission: Impossible - Rogue Nation

6.1 Jack Reacher: Never Go Back

5.4 The Mummy

4.2 (4p)

Give an example of an SQL query that has no direct translation to relational algebra. Explain what the problem is.

7/22/22, 10:23 AM Databases (TDA357/DIT621)

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-2020-03.html 6/7

5 Views, Constraints and Triggers (12p)

Consider again the database schema from question 3. Also consider an implementation of a database with this schema,
where

There is also a relation Users(username, …) for registered users of the database.
The relation Ratings is not implemented as a table, but as a view created from a table
Votes(title,username,vote) containing the individual votes from users of the database.
The SQL type TEXT is used for all names and titles.

5.1 Constraints (4p)

Write the CREATE TABLE statements that implements the relation Votes(title,username,vote). The following constraints
should be enforced:

Only registered users are allowed to vote.
You can only vote for movies listed in the Movies table.
Each user can only vote for each movie once.
A vote is one of numbers 0, 1, 2, … or 10.

5.2 Views (4p)

Write the CREATE VIEW statement for the Ratings view.

Clarification at 11:07: the view should be like the Ratings(title,averageRating,numberOfVotes) relation in question 3.

5.3 Triggers (4p)

Movie titles sometimes change. A movie might be known under a working title (e.g. Mission Impossible 4) before it is
released and an official title (e.g. Mission Impossible - Ghost Protocol) after it is released, so we might want to make
updates like the following:

UPDATE Movies SET title='Mission Impossible - Ghost Protocol'
 WHERE title='Mission Impossible 4';

The best way to prevent updates like this from causing problems is probably to use ON UPDATE CASCASE in all tables that
have references to Movies(title). But suppose for some reason ON UPDATE CASCASE can not be used and you have to use a
trigger instead, how would you define a trigger that propagates updates of movie titles to the AppearsIn and the Votes
tables?

You may assume that the checks that foreign key constraints remain valid are not performed immediately after each
update, but instead postponed until the end of the transaction.

7/22/22, 10:23 AM Databases (TDA357/DIT621)

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-2020-03.html 7/7

6 Semi-structured data (10p)

Consider again the database schema from question 3.

6.1 (5p)

Write an SQL query that creates one big JSON document containing filmographies for all movie stars, i.e. the document
should be an array that for each movie star contains an object with the name, birth year and the list of movies that the star
has appeared in. Each movie is an object containing the title, release year and average rating of the movie.

Hint: the functions jsonb_agg and jsonb_build_object will probably be useful.

6.2 (5p)

Write down the JSON Schema for the document you created in 6.1.

The schema should contain enough detail about the structure of the JSON document so that if you validate the document
you created in 6.1 against the schema you will detect if there is a problem with it, e.g. if the document has the wrong
structure, contains the wrong type of information or if some information is missing.

7/22/22, 10:23 AM TDA357/DIT621 Databases Exam Suggested Solutions

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-solutions-2020-03.html 1/9

Databases
TDA357 (Chalmers), DIT621 (University of Gothenburg)

Home Exam on 20 March 2020 at 8:30-12:30

Suggested solutions
…

7/22/22, 10:23 AM TDA357/DIT621 Databases Exam Suggested Solutions

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-solutions-2020-03.html 2/9

1 Entity-Relationship Modelling (10p)

1.1 E-R diagram (5p)

ENTITY Book : _isbn title year

ENTITY Author : _name _year

RELATIONSHIP IsWrittenBy Book -- Author

WEAK ENTITY Chapter Book In : _number title

RELATIONSHIP IsChapterAuthor Chapter -> Author

Book

_isbn

title

year

Author

_name

_year

IsWrittenBy

Chapter

In

_number

title

IsChapterAuthor

1.2 From E-R model to database schema (5p)

Title(_title,year)

TvSeries(_title)
 title -> Title(title)

TvEpisode(_title,_seriesTitle,season,episode)
title -> Title(title)
seriesTitle -> TvSeries(title)

7/22/22, 10:23 AM TDA357/DIT621 Databases Exam Suggested Solutions

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-solutions-2020-03.html 3/9

2 Functional Dependencies (8p)

2.1 Redundancies and inconsistencies (2p)

An update the keeps the information consistent:

UPDATE Bookings SET seats=40 WHERE lab='ED3507'

An update that introduces an inconsistency:

UPDATE Bookings SET seats=40 WHERE lab='ED3507' AND course='TDA555';

2.2 Dependencies and keys (3p)

Functional dependencies:

course -> name
lab -> seats
lab timeslot -> course

There is only one possible key: lab timeslot

2.3 Normalization (3p)

BCNF violations

course->name
lab->seats

Relations after BCNF decomposition

Bookings(course,_timeslot,_lab)
 course -> Courses(course)
 lab -> Labs(lab)

Courses(_course,name)

Labs(_lab,seats)

Tables

Courses

course name

TDA357 Databases

TDA555 Intro to FP

Labs

lab seats

ED3507 30

ED3354 16

ED3358 16

Bookings

course timeslot lab

7/22/22, 10:23 AM TDA357/DIT621 Databases Exam Suggested Solutions

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-solutions-2020-03.html 4/9

course timeslot lab

TDA357 Monday 10-12 ED3507

TDA357 Friday 13-15 ED3507

TDA555 Monday 10-12 ED3354

TDA555 Monday 10-12 ED3358

TDA555 Friday 15-17 ED3507

7/22/22, 10:23 AM TDA357/DIT621 Databases Exam Suggested Solutions

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-solutions-2020-03.html 5/9

3 SQL queries (12p)

3.1 (2p)

SELECT title
FROM Ratings
WHERE averageRating>=8.5 AND numberOfVotes>=10000;

3.2 (3p)

 SELECT title,releaseYear
 FROM AppearsIn NATURAL JOIN Movies
 WHERE name='Max von Sydow'
INTERSECT
 SELECT title,releaseYear
 FROM AppearsIn NATURAL JOIN Movies
 WHERE name='Angela Lansbury'

Another solution:

WITH MaxMovies AS (
 SELECT title
 FROM AppearsIn
 WHERE name = 'Max von Sydow'
),
AngelaMovies AS (
 SELECT title
 FROM AppearsIn
 WHERE name = 'Angela Lansbury'
)
SELECT Movies.title, releaseYear
FROM Movies, MaxMovies, AngelaMovies
WHERE Movies.title = MaxMovies.title
AND Movies.title = AngelaMovies.title;

Yet another solution:

SELECT M.title,releaseYear
FROM Movies AS M
 INNER JOIN AppearsIn AS A1
 ON A1.title=M.title AND A1.name='Angela Lansbury'
 INNER JOIN AppearsIn AS A2
 ON A2.title=M.title AND A2.name='Max von Sydow';

And yet another solution:

SELECT title,releaseYear
FROM Movies NATURAL JOIN AppearsIn
WHERE name='Max von Sydow'
 AND title IN (SELECT title FROM AppearsIn WHERE name='Angela Lansbury');

Another variant:

SELECT * FROM Movies
WHERE 'Max von Sydow' IN (SELECT name FROM AppearsIn
 WHERE AppearsIn.title = Movies.title)
AND 'Angela Lansbury' IN (SELECT name FROM AppearsIn
 WHERE AppearsIn.title = Movies.title);

Even more ways:

SELECT title, releaseYear
FROM Movies
WHERE (SELECT COUNT(name)

7/22/22, 10:23 AM TDA357/DIT621 Databases Exam Suggested Solutions

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-solutions-2020-03.html 6/9

 FROM AppearsIn
 WHERE title=Movies.title AND
 name IN ('Max von Sydow', 'Angela Lansbury')) = 2;

3.3 (3p)

SELECT DISTINCT name
FROM Movies NATURAL JOIN AppearsIn NATURAL JOIN MovieStars
WHERE releaseYear-birthYear<16

Alternative solution:

WITH FirstAppearance AS (
 SELECT name,MIN(releaseYear) AS firstYear
 FROM Movies NATURAL JOIN AppearsIn
 GROUP BY name)
SELECT name
FROM FirstAppearance NATURAL JOIN MovieStars
WHERE firstYear-birthYear<16

Yet another solution:

WITH AppearancesWithAge AS (
 SELECT name,title,releaseYear-birthYear AS age
 FROM Movies NATURAL JOIN AppearsIn NATURAL JOIN MovieStars
)
SELECT DISTINCT name
FROM AppearancesWithAge
WHERE age<16

3.4 (4p)

WITH
 RatedMovies AS (
 SELECT releaseYear AS year,title,averageRating
 FROM Movies NATURAL JOIN Ratings
 WHERE releaseYear>=1970 and numberOfVotes>=10000),
 TopRatings AS (
 SELECT year,MAX(averageRating) AS topRating
 FROM RatedMovies
 GROUP BY year)
SELECT year,topRating AS rating,title
FROM RatedMovies NATURAL JOIN TopRatings
WHERE averageRating=topRating
ORDER BY year;

This should also work (in principle, it took too long in my test):

SELECT releaseYear,averageRating,title
FROM Movies AS M NATURAL JOIN Ratings
WHERE releaseYear>=1970 AND numberOfVotes>=10000
 AND averageRating = (SELECT MAX(averageRating)
 FROM Movies NATURAL JOIN Ratings
 WHERE numberOfVotes>=10000
 AND releaseYear = M.releaseYear);

7/22/22, 10:23 AM TDA357/DIT621 Databases Exam Suggested Solutions

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-solutions-2020-03.html 7/9

4 Algebra and theory (8p)

4.1 (4p)

πaverageRating,title (σname=‘Tom Cruise’ (AppearsIn ⋈ Rating))

Or:

πaverageRating,title ((σname=‘Tom Cruise’ AppearsIn) ⋈ Rating)

4.2 (4p)

SELECT name
FROM Countries
WHERE name IN (SELECT capital FROM countries);

This would be translated to πname (σcondition Countries) in relational algebra, where condition comes from WHERE
clause in the SQL query, which in this example contains another query. The problem is that the conditions in the sigma
operator are not allowed to contain relational algebra operators.

7/22/22, 10:23 AM TDA357/DIT621 Databases Exam Suggested Solutions

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-solutions-2020-03.html 8/9

5 Views, Constraints and Triggers (12p)

5.1 (4p)

CREATE TABLE Votes(
 title TEXT REFERENCES Movies(title),
 username TEXT REFERENCES Users(username),
 vote INT NOT NULL CHECK (0<=vote AND vote<=10),
 -- (vote BETWEEN 0 AND 10)
 PRIMARY KEY (title,username)
);

5.2 (4p)

CREATE VIEW Ratings AS (
 SELECT title,AVG(vote) AS averageRating,COUNT(vote) AS numberOfVotes
 FROM Votes
 GROUP BY title
);

5.3 (4p)

CREATE OR REPLACE FUNCTION propagate_title() RETURNS TRIGGER AS $$
BEGIN
 IF NEW.title<>OLD.title THEN
 UPDATE AppearsIn SET title=NEW.title WHERE title=OLD.title;
 UPDATE Votes SET title=NEW.title WHERE title=OLD.title;
 END IF;
 RETURN NULL;
END
$$ LANGUAGE plpgsql;

CREATE TRIGGER propagate_title AFTER UPDATE ON Movies
 FOR EACH ROW EXECUTE FUNCTION propagate_title();

7/22/22, 10:23 AM TDA357/DIT621 Databases Exam Suggested Solutions

www.cse.chalmers.se/edu/year/2020/course/TDA357/Exams/exam-solutions-2020-03.html 9/9

6 Semi-structured data (10p)

6.1 (5p)

WITH Filmographies AS (
 SELECT jsonb_build_object(
 'name',name,
 'birthYear',MAX(birthYear),
 'movies',jsonb_agg(jsonb_build_object(
 'title',title,
 'year',releaseYear,
 'rating',averageRating))) AS filmography
 FROM Movies NATURAL JOIN MovieStarts
 NATURAL JOIN AppearsIn
 NATURAL JOIN Ratings
 GROUP BY name)
SELECT jsonb_agg(filmography) AS filmographies
FROM Filmographies;

6.2 (5p)

{"type":"array",
 "items":{
 "type":"object",
 "required":["name","birthYear","movies"],
 "properties":{
 "name":{"type":"string"},
 "birthYear":{"type":"number"},
 "movies":{"type":"array",
 "items":{
 "type":"object",
 "required":["title","year","rating"],
 "properties":{
 "title":{"type":"string"},
 "year":{"type":"number"},
 "rating":{"type":"number"}
 }
 }
 }
 }
 }
}

