
Databases Exam

(With solutions)
TDA357 (Chalmers), DIT621 (University of Gothenburg)

2020-01-15 14:00-18:00

Department of Computer Science and Engineering

Examiner: Jonas Duregård tel. 031-772 1028.

Results: Will be published within three weeks from exam date

Maximum points: 60

Grade limits Chalmers: 24 for 3, 36 for 4, 48 for 5.

Grade limits GU: 24 for G, 42 for VG.

Allowed material: One double sided A4 sheet with hand-written notes. If you bring a sheet, it

must be handed in with your answers to the exam questions, add “+1” in the box for number

of pages on the exam cover. Also, a standard reference is handed out in a separate document.

One English language dictionary is also allowed. You can answer in English or Swedish.

Begin the answer to each question (numbers 1 to 6) on a new page. The a,b,c,... parts with

the same number can be on the same page.

Write the question number on every page. Write clearly, unreadable answers give no points!

Fewer points are sometimes given for solutions that are clearly unnecessarily complicated.

Indicate clearly if you make any assumptions that are not given in the question. In

particular: in SQL questions, use standard SQL or PostgreSQL. If you use any other variant

(such as Oracle or MySQL), say this; but full points are not guaranteed since this may

change the nature of the question.

Question 1: ER-design (10 points, 4+4+2)

a) Make an ER-diagram for a waiting list system for lab sessions, somewhat similar to the

one used in this course.

The system can handle multiple waiting lists. Each waiting list has an owner (the course

responsible for the course, identified by their email-address). When creating a waiting list,

the owner provides the course name, a list of rooms for the lab sessions and a list of help

topics.

Students can sign up to any waiting list by providing their name and choosing one of the

help topics and one of the rooms for the waiting list. Note: You may not be able to enforce

that the topic and room are for the same course (see below), but it must be possible to list

the help topics and rooms of any course using your design. The time the students sign up at

should also be recorded.

Multiple waiting lists can have the same name. Rooms in different courses can have the same

name, but not within a course. The same goes for help topic names.

b) Translate your diagram from a) into a relational schema using the standard translation

algorithm. In this part you should not do any clever tricks, just translate your ER-diagram

into an equivalent schema.

c) If your ER-design does not guarantee that students can only sign up for topics and room

of the same course, make minimal changes to your schema to enforce this. You only need to

provide the parts of the schema that you change compared to (b).

1 a) This turned out a bit more complicated than I had intended, grading will take

this into account

2 b) Correct translations of your diagram give points. For the diagram above:

Courses(owner, cname, id)

Topics(tname, course)

 course -> Courses.id

Rooms(rname, course)

 course -> Courses.id

Signups(tname,tcourse,rname,rcourse, course, signuptime,sname)

 (tname, tcourse) -> Topics(tname, course)

 (rname, rcourse) -> Rooms(tname, course)

 course -> Courses.id

1 c) Either add tcourse=rcourse (=course) to signups, or just merge them to:

Signups(tname, rname, course, signuptime, sname)

 (tname, course) -> Topic(tname, course)

 (rname, course) -> Room(tname, course)

Topic

signuptime

Course TopicIn

owner cname

Room

rname

InRoom

RoomIn

tname

sname

Signup

ForCourse

InTopic

id

Question 2: Functional Dependencies, Normal Forms (10 p, 6+4)

Consider a relation R(A, B, C, D, E, F) with the following Functional Dependencies

A → B

A C → D

A C → E

A C → F

D → A

D → C

A F → E

E → A

a) Identify three different BCNF violations and compute the closure of the left hand side.

Your solution should be three closures on the form:

{…}+ = {…}

The right hand side of the equality should be different in all three, and all should be BCNF

violations of R.

b) Study this table of courses, course classifications and exam registrations:

course examDate student classification

TDA357 2020-01-15 Emil Computer Science

TDA357 2020-01-15 Emilia Computer Science

TDA357 2020-03-20 Emil Computer Science

TDA357 2020-01-15 Emil Fun!

TDA357 2020-01-15 Emilia Fun!

TDA357 2020-03-20 Emil Fun!

XYZ123 2020-01-15 Emil Computer Science

Identify a non-trivial MVD that holds on this data and violates 4NF, and provide a schema

in 4NF based on that MVD (you do not need to provide the data, just the schema and the

MVD you use).

2 a) I believe this is the only correct solution:

{A}+ = {A,B}

{A, F}+ = {A, B, E, F}

{E}+ = {A,B,E}

2 b)

course ->> classification (or equivalently: course ->> examDate, student)

R1(course, examDate, student)

R2(course, classification)

Question 3: SQL Queries (10 p, 5+5)

Below is the schema for a database of posts and comments on some kind of web-application.

Every post is written by an author. Comments can be written to posts, each comment has a

number (unique within posts) and may be either a top level comment (when replyTo is null)

or a reply to an earlier comment of the same post (replyTo is the number of the comment it

replies to).

Posts(idnr, author, text)

Comments(number, inPost, commenter, text, replyTo (or null))

 inPost -> Posts.idnr

Example contents:

idnr author text

0 Jonas …

1 Matti …

2 Jonas …

3 Test …

a) Find the number and post-id of all comments that are replies to replies. In this case (2,1)

and (3,1).

b) For each commenter, find the post author(s) they have written most comments (including

replies) to. The result for the example data should be:

commenter author

Jonas Matti

Sanoj Matti

Matti Jonas

Matti Matti

number inPost commenter text replyTo

0 1 Jonas First! null

1 1 Sanoj *sigh* 0

2 1 Jonas :(1

3 1 Matti I agree 1

0 0 Matti Nice null

0 2 Jonas Thoughts? null

Including test data (not part of solution):

CREATE TABLE Posts

 (idnr SERIAL PRIMARY KEY

 , author TEXT NOT NULL

 , text TEXT NOT NULL

);

CREATE TABLE Comments

 (number INT NOT NULL

 , inPost INT NOT NULL REFERENCES Posts

 , commenter TEXT NOT NULL

 , text TEXT NOT NULL

 , replyTo INT

 , PRIMARY KEY (number, inPost)

);

INSERT INTO Posts VALUES (0, 'Jonas', '...');

INSERT INTO Posts VALUES (1, 'Matti', '...');

INSERT INTO Posts VALUES (2, 'Jonas', '...');

INSERT INTO Posts VALUES (3, 'Test', '...');

INSERT INTO Comments VALUES (0, 1, 'Jonas', 'First!', null);

INSERT INTO Comments VALUES (1, 1, 'Sanoj', '*sigh*', 0);

INSERT INTO Comments VALUES (2, 1, 'Jonas', ':(', 1);

INSERT INTO Comments VALUES (3, 1, 'Matti', 'I agree', 1);

INSERT INTO Comments VALUES (0, 0, 'Matti', 'Nice', null);

INSERT INTO Comments VALUES (0, 2, 'Jonas', 'Thoughts?',

null);

-- 3 a

SELECT A.number, A.inpost

 FROM Comments A, Comments B

 WHERE A.replyTo = B.number

 AND A.inPost = B.inPost

 AND B.replyTo IS NOT null;

-- 3 b

WITH

 Counts AS

 (SELECT commenter, author, count(*) AS total

 FROM Posts JOIN Comments ON (idnr = inPost)

 GROUP BY commenter, author),

 Maxes AS

 (SELECT commenter, max(total) FROM Counts

 GROUP BY commenter)

SELECT commenter, author

 FROM Counts NATURAL JOIN Maxes

 WHERE total = max;

Question 4: Relational Algebra (10, 3+3+4)

a) On the same schema and data as the previous question, what is the result of this relational

algebra expression? (Your answer should be a table with three columns)

γcommenter, inPost, MIN(number) -> first(Comments)

b) On the same schema as the previous question, write a relational algebra expression that

gives the text of all posts and all comments written by Jonas, in a single column.

You do not need to consider duplicate texts, and may either include or exclude duplicates.

With duplicates included, the result would have five rows for the example data.

c) On the same schema as the previous question, write a relational algebra expression that for

each reply, finds its number, post, and text along with the text of the comment it replies to.

Expected result for given data

 number inPost text parentText

1 1 *sigh* First

2 1 :(*sigh*

3 1 I agree *sigh*

4 a)

commenter | inpost | first

-----------+--------+-------

 Jonas | 2 | 0

 Sanoj | 1 | 1

 Matti | 1 | 3

 Jonas | 1 | 0

 Matti | 0 | 0

4 b) and c), including SQL code just if you want to test

-- 4 b

-- pi[text] (sigma[author='Jonas'] Posts)

-- U

-- pi[text] (sigma[author='Jonas'] Comments)

SELECT text FROM Posts WHERE author = 'Jonas'

UNION

SELECT text FROM Comments WHERE commenter = 'Jonas';

-- 4 c

--pi[A.number, A.inPost, A.text, B.text]

-- sigma[A.replyTo = B.number & A.inPost = B.inPost]

-- (rho[A] Comments) X (rho[B] Comments)

SELECT A.number, A.inPost, A.text, B.text

 FROM Comments A, Comments B

 WHERE A.replyTo = B.number

 AND A.inPost = B.inPost;

Question 5: Views, constraints and triggers (10 p)

Database integrity can be improved by several techniques:

• Views: virtual tables that show useful information that would create redundancy if

stored in the actual tables

• SQL Constraints: conditions on attribute values and tuples

• Triggers (and assertions): automated checks and actions performed on entire tables

As a general rule, these methods should be applied in the above order: if a view or constraint

can adequately do the job, do not use a trigger.

The task in this question is to implement a small database. You may use any SQL features

we have covered in the course. While the description below gives requirements for what

should be in the database, you are allowed to divide it across as many tables and views as

you need to. Points will be deducted if your solution uses a trigger where a constraint or view

would suffice, or if your solution is drastically over-complicated. For triggers, it is enough to

specify which actions and tables it applies to, and PL/(pg)SQL pseudo-code of the function it

executes.

The domain is the same as the previous questions, extended with revision history for

comments, which contains all texts that a comment has had (more than one if they have

been edited by the author).

Posts(idnr, author, text)

Comments(number, inPost, commenter, text, replyTo (or null))

 inPost -> Posts.idnr

Revisions(revisionId, inPost, number, text)

 (inPost, number) -> Comments(inPost, number)

Implement the following additional constraints in your design. Put letters in the margin of

your code indicating where each constraint is implemented (possibly the same letter in

several places):

a) If a comment is a reply, it must be to a comment with a lower number.

b) Whenever a comment is created or updated, its updated text should automatically be

added to revision history.

c) If a post is deleted, its comments should automatically be deleted as well

d) Replies must be to an existing number (in the same post)

e) If there are multiple revisions of a comment, the revision with the highest revisionId

should be the current (most recent) text of the comment.

Hint: Reference constraints do allow null values.

Hint: Remember to be careful about comparisons involving null values in constraints.

CREATE TABLE Posts

 (idnr SERIAL PRIMARY KEY

 , author TEXT NOT NULL

 , text TEXT NOT NULL

);

CREATE TABLE Comments

 (number INT NOT NULL

 , inPost INT NOT NULL REFERENCES Posts ON DELETE CASCADE -- c

 , commenter TEXT NOT NULL

 , text TEXT

 , replyTo INT

 , PRIMARY KEY (number, inPost)

 , FOREIGN KEY (inPost, replyTo) REFERENCES Comments(inPost, number) -- a

 , CHECK (replyTo IS NULL OR replyTo < number) -- d

);

CREATE TABLE Revisions

 (revisionID SERIAL PRIMARY KEY -- e

 , inPost INT NOT NULL REFERENCES Posts

 , number INT NOT NULL

 , text TEXT

 , FOREIGN KEY (number, inPost) REFERENCES Comments(number, inPost)

);

-- b

CREATE OR REPLACE FUNCTION revise() RETURNS TRIGGER AS $$

 BEGIN

 INSERT INTO Revisions VALUES

 (DEFAULT -- e (or: SELECT MAX(revisionID)+1 FROM Revisions)

 , NEW.inPost

 , NEW.number

 , NEW.text

);

 RETURN NEW;

 END;

$$ LANGUAGE plpgsql;

CREATE TRIGGER revise

AFTER INSERT OR UPDATE ON Comments

FOR EACH ROW EXECUTE PROCEDURE revise();

-- Testing, not part of solution

INSERT INTO Posts VALUES (0, 'Jonas', '...');

INSERT INTO Posts VALUES (1, 'Matti', '...');

INSERT INTO Posts VALUES (2, 'Jonas', '...');

INSERT INTO Posts VALUES (3, 'Test', '...');

INSERT INTO Comments VALUES (0, 1, 'Jonas', 'First!', null);

INSERT INTO Comments VALUES (1, 1, 'Sanoj', '*sigh*', 0);

INSERT INTO Comments VALUES (2, 1, 'Jonas', ':(', 1);

INSERT INTO Comments VALUES (3, 1, 'Matti', 'I agree', 1);

INSERT INTO Comments VALUES (0, 0, 'Matti', 'Nice', null);

INSERT INTO Comments VALUES (0, 2, 'Jonas', 'Thoughts?', null);

UPDATE Comments SET text = 'foo';

SELECT * FROM Revisions;

Question 6: Semi-structured data and other topics (10 p, 3+4+3)

a) Suppose a fellow student claims that SQL injection vulnerabilities can never occur as long

as the JDBC PreparedStatement class is used for queries. Either provide a counterexample to

this (a sketch of Java code using PreparedStatement that is vulnerable to SQL injection) or if

you agree with the claim provide a convincing explanation of why it is correct.

b) Study this JSON Schema for posts and comments (same domain as previous questions):
{

 "type": "array",

 "items": {

 "type": "object",

 "required": ["author","text","comments"],

 "properties": {

 "author": {"type": "string"},

 "text": {"type": "string"},

 "comments": {"$ref": "#/definitions/comments"}

 }

 },

 "definitions": {

 "comments": {

 "type": "array",

 "items": {

 "type": "object",

 "required": ["commenter","text"],

 "properties": {

 "commenter": {"type": "string"},

 "text": {"type": "string"},

 "replies": {"$ref": "#/definitions/comments"}

 }

 }

 }

 }

}

Write a JSON document encoding this data, valid with the given schema:

idnr author text

0 Matti …

1 Jonas …

idnr and number can mostly be ignored, except that if two items are in the same JSON array

then the one with the lower number should be at a lower array index.

c) Based on the same JSON Schema, write a JSON Path expression that finds the texts of all

comments written by Jonas (in all posts and including replies to comments). Should give two

values for the example data in (b).

number inPost commenter text replyTo

0 0 Jonas First! null

1 0 Sanoj *sigh* 0

2 0 Jonas :(1

3 0 Matti I agree 1

0 1 Matti Nice null

6 a) It is possible to have SQL injection vulnerabilities. Anything like

string x = getUserInput();

PreparedStatement ps = conn.prepareStatement(

 "DELETE FROM A where b='"+x+"'");

6 b)
[

{ "author" : "Matti",

 "text" : "...",

 "comments" : [

 {"commenter" : "Jonas",

 "text" : "First!",

 "replies" : [

 {"commenter" : "Sanoj",

 "text" : "*sigh*",

 "replies" : [

 {"commenter" : "Jonas", "text" : ":("},

 {"commenter" : "matti", "text" : "I agree"}

]

 }

]

 }

]

},

{ "author" : "Jonas",

 "text" : "...",

 "comments" : [

 {"commenter" : "Matti", "text" : "Nice"}

]

}

]

6 c) one solution:

$.*.comments.**?(@.commenter="Jonas").text

Another (simpler) one:

$.**?(@.commenter="Jonas").text

