
CHALMERS UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering

Examination in Databases, TDA357/DIT620

Tuesday 13 January 2015, 14:00-18:00

Examiner: Graham Kemp (telephone 772 54 11, room 6475 EDIT)
The examiner will visit the exam room at 15:00 and 17:00.

Results: Will be published by the end of January at the latest.

Exam review: See course web page for time and place:
http://www.cse.chalmers.se/edu/year/2014/course/TDA357/HT2014/

Grades: Grades for Chalmers students (TDA357) are normally determined as follows:
≥ 48 for grade 5; ≥ 36 for grade 4; ≥ 24 for grade 3.

Grades for GU students (DIT620) are normally determined as follows:
≥ 42 for grade VG; ≥ 24 for grade G.

Help material: One A4 sheet with hand-written notes.
You may write on both sides of that sheet.
If you bring a sheet, it must be handed in with your answers to the exam
questions.

English language dictionaries are allowed.

Specific instructions:

• Please answer in English where possible. You may clarify your answers in Swedish if you
are not confident you have expressed yourself correctly in English.

• Begin the answer to each question on a new page.

• Write clearly; unreadable = wrong!

• Fewer points are given for unnecessarily complicated solutions.

• Indicate clearly if you make any assumptions that are not given in the question.

• Write the page number and question number on every page.

1 of 5

12 p

Question 1. a) Consider the following domain description.

Students and staff at a university can book rooms for meetings. Each per-
son is identified by their university e-mail address. People’s real names are
also stored. The office telephone number of each member of staff is stored.
Rooms are identified by a combination of the room number and the name of
the building where the room is located. Building names are unique at the
university, but two or more buildings can have rooms with the same number.
Each booking is assigned a unique identifier. The year, week number, day
(e.g. Monday), start time and end time of each room booking is stored, and
also the person who made the booking. Assume that bookings are automat-
ically deleted from the system after the meeting time has passed. Members
of staff are allowed to make many room bookings, but each student can only
have one room booking in the system at any time. For each booking made
by a student, a course code must be recorded with the booking.

Draw an E-R diagram that correctly models this domain.

(6p)

b) Translate the following E-R diagram into a set of relations, clearly marking all refer-
ences and keys.
Use the E-R approach to translate subclass-superclass (ISA) relationships.

ISA

ISA

E2

E3

a

b

d

c

E4

E5

e

f

g

h

E1

R1

R2

R3

(6p)

10 p

Question 2. Suppose we have relation R(A, B, C, D, E, F, G) with keys ABC, ACD and ACG, and
functional dependencies A → E, AB → D, ABC → F , ABC → G, CD → G, E → F ,
G → B.

a) i) State, with reasons, which of the FDs listed above violate BCNF. (1p)

ii) Decompose relation R to BCNF. Show each step in the normalisation process,
and at each step indicate which functional dependency is being used. Indicate
keys and references for the resulting relations. (4p)

b) i) Which attributes of R are prime? (1p)

ii) State, with reasons, which of the FDs listed above violate 3NF. (1p)

iii) Decompose relation R to 3NF. (3p)

2 of 5

10 p

Question 3. A university uses a database to manage information about applications to its Master’s
programmes. This database has the following relations:

Programmes(code, name, department, numPlaces)
Applicants(name, address, appNumber)
AppliesFor(applicant, programme, choiceNumber, meritScore, status)

Each programme is identified by its code. The programme name, the name of the depart-
ment that arranges the programme, and the number of available places for students in the
programme this year are stored.

Each applicant’s name, address and (unique) applicant number are stored.

Each applicant can apply to up to four programmes, and attribute choiceNumber records
the applicant’s prioritisation of the programmes (e.g. someone might apply to two pro-
grammes: Computer Science as choice 1 and Physics as choice 2). Possible values for this
attribute are 1, 2, 3 and 4. The choice numbers for a particular applicant must be unique
(e.g. an applicant cannot apply to two programmes giving both as choice number 1).

When applications to a programme are processed by the university, the applications are
ranked, and each application is assigned a merit score between 1 and 1000 (e.g. the top
three applications for a programme might be assigned merit scores 920, 890 and 870). No
two applicants can get the same merit score for the same programme (you can assume
that no programme has more than 1000 applicants). A default merit score of ‘0’ indicates
that the application has not been evaluated yet.

Attribute status has the value ‘unprocessed’, ‘offered’ (a place on the programme has
been offered to the applicant), ‘accepted’ (the applicant received an offer and accepted it),
‘declined’ (the applicant received an offer but declined it), ‘offer withdrawn’ (an offer was
made, but the applicant did not respond before the deadline for accepting the offer), or
‘rejected’ (the university decided not to offer a place on this programme to this applicant).
The default status is ‘unprocessed’.

a) Suggest references for these relations.

Write SQL statements that create these relations with constraints in a DBMS.

(4p)

b) Choice numbers for the applications from a particular applicant must be consecutive
numbers starting from 1 (i.e. if someone applies to four programmes, their choice
numbers will be 1, 2, 3 and 4; to three programmes the choice numbers are 1, 2 and
3; to two programmes the choice numbers are 1 and 2; to one programme the choice
number is 1).

Write an assertion that checks this. (You can assume that any constraints in your
solution to part (a) are enforced.)

(2p)

c) If the number of students who have accepted places in a programme has reached the
number of available places in that programme, then all unprocessed applications to
that programme can be rejected.

Write a trigger that implements this.

What privileges must a user have in order to fire this trigger?

(4p)

3 of 5

6 p

Question 4. Assume the same relations as in Question 3:

Programmes(code, name, department, numPlaces)
Applicants(name, address, appNumber)
AppliesFor(applicant, programme, choiceNumber, meritScore, status)

a) Write a relational algebra expression that finds the names of applicants and pro-
gramme names where the applicant applied to a programme arranged by the Physics
department as their first choice.

(3p)

b) Write a relational algebra expression that finds the code of the programme(s) selected
as first choice by the largest number of applicants.

(3p)

9 p

Question 5. Assume the same relations as in Question 3:

Programmes(code, name, department, numPlaces)
Applicants(name, address, appNumber)
AppliesFor(applicant, programme, choiceNumber, meritScore, status)

a) Write an SQL query that finds the names of applicants and programme names where
the applicant applied to a programme arranged by the Physics department as their
first choice.

(3p)

b) Write an SQL query that finds the code of the programme(s) selected as first choice
by the largest number of applicants.

(3p)

c) Write an SQL query that finds how many applicants chose the programme with code
‘MPALG’ in preference to the programme with code ‘MPCSN’. The total should
include those applicants who applied to both programmes but gave a lower choice
number for ‘MPALG’, and also applicants who applied to ‘MPALG’ but did not
apply to ‘MPCSN’.

(3p)

4 of 5

5 p

Question 6. Suppose a system for handling applications to a university’s Master’s programmes (as de-
scribed in Question 3) has a transaction, T , with the following steps:

T1: get a programme code from the user (store this in p), and find the
unprocessed application to this programme with the highest merit score

T2: count how many applicants have accepted a place on programme p

T3: offer the applicant identified in step T1 a place on programme p, and set the
status attribute in the relevant row of relation AppliesFor to ‘offered’

T4: get response from the applicant (‘accepted’ or ‘declined’) and set the status

attribute in the relevant row of relation AppliesFor accordingly
T5: count how many applicants have accepted a place on programme p

a) In database transactions, what are phantoms? Refer to transaction T in your answer.

(2p)

b) Discuss how the results of steps T2 and T5 could differ if transaction T is run with
different isolation levels.

Discuss what isolation level(s) would be most appropriate for running transaction T .

(3p)

8 p

Question 7. Consider the following piece of XML:

<Question7>

<Applicants>

<Applicant name="Andersson" appNum="a1" />

<Applicant name="Jonsson" appNum="a2" />

<Applicant name="Larsson" appNum="a3" />

</Applicants>

<Choices>

<Choice applicant="a1" code="MPSOF" choiceNum="1" meritScore="750" />

<Choice applicant="a1" code="MPALG" choiceNum="2" meritScore="750" />

<Choice applicant="a1" code="MPCSN" choiceNum="3" meritScore="800" />

<Choice applicant="a2" code="MPALG" choiceNum="1" meritScore="700" />

<Choice applicant="a3" code="MPCSN" choiceNum="1" meritScore="850" />

<Choice applicant="a3" code="MPALG" choiceNum="2" meritScore="850" />

</Choices>

</Question7>

a) Write a Document Type Definition (DTD) for the XML that is given above.

(2p)

b) Write an XPath expression that finds Choice elements where the choice number is 1
and the merit score is greater than 800.

(1p)

c) The flexibility of XML enables us to nest elements in a more natural way than in the
example shown at the top of this question. Write a piece of XML that contains the
same information as in the example shown above, but which uses nesting, and avoids
duplication of applicant identifiers.

(2p)

d) Assuming that the XML shown above is in file exam.xml, write an XQuery expression
that constructs your solution to part (c).

(3p)

5 of 5

CHALMERS UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering

Examination in Databases, TDA357/DIT620

Tuesday 13 January 2015, 14:00-18:00

Solutions

Updated 2015-02-09

1 of 7

12 p

Question 1. a) This suggestion is acceptable:

ISA ISA

PersonRoom

year

startTime

building roomNumber

bookingId

day

week

endTime

Booking

bookedRoom

courseCode

studentBooking

staffBooking

Student

Staff

nameemail

telephone

However, that suggestion does not model the multiplicity of the relationships between
booking, students and staff in a good way. These can be represented in a better way
with subclasses of booking:

ISA ISA ISA ISA

Person

nameemail

courseCode

Staff

Student telephone

Room

year

startTime

building roomNumber

bookingId

day

week

endTime

Booking

bookedRoom

StudentBooking

StaffBooking

bookedByStudent

bookedByStaff

b) E1(a, b, c)

E2(a, b, d)
(a, b) → E1.(a, b)

E3(a, b)
(a, b) → E2.(a, b)

E4(a, b, e, f)
(a, b) → E2.(a, b)

E5(g, h, a, b, e)
(a, b, e) → E4.(a, b, e)

R2(a, b, g)
(a, b) → E3.(a, b)
g → E5.g

2 of 7

10 p

Question 2. a) i) ABC->F and ABC->G do not violate BCNF since their left sides are keys.

The other 5 FDs violate BCNF.

ii) Decompose R on A->E

{A}+ = {AEF}

R1(_A,E,F)

R2(A,B,C,D,G)

A -> R1.A

Decompose R2 on AB->D

{AB}+ = {ABD}

R21(_A,_B,D)

A -> R1.A

R22(A,B,C,G)

(A,B) -> R21(A,B)

Decompose R1 on E->F

{E}+ = {E,F}

R11(_E,F)

R12(E,_A)

E -> R11.E

Decompose R22 on G->B

{G}+ = {GB}

R221(_G,B)

R222(_A,_C,_G)

G -> R221.G

Update reference for R21: A -> R12.A

b) i) A, B, C, D, G

ii) A->E, E->F

iii) R1(_A,E)

R2(_A,_B,D)

R3(_A,_B,_C,F,G)

R4(_C,_D,G)

R5(_E,F)

R6(_G,B)

3 of 7

10 p

Question 3. a) CREATE TABLE Programmes (

code CHAR(5) PRIMARY KEY,

name VARCHAR(50),

department VARCHAR(50),

numPlaces INT

);

CREATE TABLE Applicants (

name VARCHAR(30),

address VARCHAR(50),

appNumber INT PRIMARY KEY

);

CREATE TABLE AppliesFor (

applicant REFERENCES Applicants(appNumber),

programme REFERENCES Programmes(code),

choiceNumber INT CHECK (choiceNumber BETWEEN 1 AND 4),

meritScore INT DEFAULT 0 CHECK (meritScore BETWEEN 0 AND 1000),

status VARCHAR(30) DEFAULT ’unprocessed’

CHECK (status IN (’unprocessed’, ’offered’,

’accepted’, ’declined’,

’offer withdrawn’, ’rejected’)),

PRIMARY KEY (applicant, programme),

CONSTRAINT choices_unique UNIQUE (applicant, choiceNumber)

);

b) CREATE ASSERTION ConsecutiveChoices CHECK

(NOT EXISTS (

SELECT applicant

FROM AppliesFor

GROUP BY applicant

HAVING MAX(choiceNumber) > COUNT(choiceNumber)))

c) CREATE OR REPLACE TRIGGER CourseFull

AFTER UPDATE OF status ON AppliesFor

REFERENCING NEW AS newrow

FOR EACH ROW

WHEN (newrow.status = "accepted")

BEGIN

IF ((SELECT COUNT(applicant)

FROM AppliesFor

WHERE programme = :newrow.programme

AND status = "accepted") >= (SELECT numPlaces

FROM Programmes

WHERE code = :newrow.programme)) THEN

UPDATE AppliesFor

SET status = "rejected"

WHERE status = "unprocessed" AND programme = :newrow.programme;

END IF;

END;

Privilege UPDATE of attribute status in table AppliesFor is needed.

4 of 7

6 p

Question 4. a) πApplicants.name,Programmes.name(Applicants 1applicant=appNumber

((σdepartment=”Physics”Programmes) 1code=programme (σchoiceNumber=1AppliesFor)))

b) R := γprogramme,COUNT (appliocant)→numApplicants(σchoiceNumber=1AppliesFor)

πprogramme(σnumApplicants=maxApplicants(γMAX(numApplicants)→maxApplicantsR)R)

9 p

Question 5. a) SELECT Applicants.name, Programmes.name

FROM Applicants, Programmes, AppliesFor

WHERE applicant = appNumber

AND code = programme

AND department = ’Physics’

AND choiceNumber = 1

b) WITH R AS (SELECT programme, COUNT(applicant) AS numApplicants

FROM AppliesFor

WHERE choiceNumber = 1)

SELECT Programme

FROM R

WHERE numApplicants = (SELECT MAX(numApplicants)

FROM R)

c) WITH R1 AS

(SELECT A.applicant AS name

FROM AppliesFor A JOIN AppliesFor B ON A.applicant = B.applicant

WHERE A.programme = ’MPALG’

AND B.programme = ’MPCSN’

AND A.choiceNumber < B.choiceNumber)

WITH R2 AS

(SELECT name

FROM Applicants

WHERE ’MPALG’ IN (

SELECT programme

FROM AppliesFor

WHERE applicant = name)

AND ’MPCSN’ NOT IN (

SELECT programme

FROM AppliesFor

WHERE applicant = name)

SELECT COUNT(name)

FROM R1 UNION R2

5 of 7

5 p

Question 6. a) See the lecture slides on transactions. In short phantoms can occur when (i) trans-
action A reads data satisfying some <search conditions>, then (ii) transaction B
creates data items satisfying A’s <search conditions>, then A repeats a read with
the same <search conditions>.

b) In the normal case, T5 returns a value one larger than T2 (if place is accepted) or the
same as T2 (if place is declined).

Larger values for T5 can occur due to phantoms (see part (a)) for transactions run
with isoltion levels REPEATABLE READ, READ COMMITTED or READ UN-
COMMITTED.

Running transactions with isolation level SERIALIZABLE is the only way to avoid
possible problems with phantoms. But step T4 involves waiting for a reply from the
applicant, and it would be unacceptable for other transactions to have to wait.

6 of 7

8 p

Question 7. a) <!DOCTYPE Question7 [

<!ELEMENT Question7 (Applicants, Choices)>

<!ELEMENT Applicants (Applicant*)>

<!ELEMENT Applicant EMPTY>

<!ATTLIST Applicant

name CDATA #REQUIRED

appNum ID #REQUIRED >

<!ELEMENT Choices (Choice*)>

<!ELEMENT Choice EMPTY>

<!ATTLIST Choice

applicant IDREF #REQUIRED

code CDATA #REQUIRED

choiceNum CDATA #REQUIRED

meritScore CDATA #REQUIRED>

]>

b) //Choice[@choiceNum="1" and @meritScore>800]

c) <Question7>

<Applicant appNum="a1" name="Andersson">

<Choice meritScore="750" choiceNum="1" code="MPSOF"/>

<Choice meritScore="750" choiceNum="2" code="MPALG"/>

<Choice meritScore="800" choiceNum="3" code="MPCSN"/>

</Applicant>

<Applicant appNum="a2" name="Jonsson">

<Choice meritScore="700" choiceNum="1" code="MPALG"/>

</Applicant>

<Applicant appNum="a3" name="Larsson">

<Choice meritScore="850" choiceNum="1" code="MPCSN"/>

<Choice meritScore="850" choiceNum="2" code="MPALG"/>

</Applicant>

</Question7>

d) <Question7>

{

let $d := doc("exam.xml")

for $a in $d//Applicant

let $choices := (

for $c in $d//Choices/Choice[@applicant = $a/@appNum]

return <Choice code="{$c/@code}"

choiceNum="{$c/@choiceNum}"

meritScore="{$c/@meritScore}" />)

return <Applicant name="{$a/@name}" appNum="{$a/@appNum}" >

{$choices}

</Applicant>

}

</Question7>

7 of 7

