
CHALMERS UNIVERSITY OF TECHNOLOGY
Department of Computer Science and Engineering

Examination in Databases, TDA357/DIT620

Thursday 20 December 2012, 14:00-18:00

Examiner: Graham Kemp (telephone 772 54 11, room 6475 EDIT)
The examiner will visit the exam room at 15:00 and 17:00.

Results: Will be published by the middle of January at the latest.

Exam review: See course web page for time and place:
http://www.cse.chalmers.se/edu/year/2012/course/TDA357/HT2012/

Grades: Grades for Chalmers students (TDA357) are normally determined as follows:
≥ 48 for grade 5; ≥ 36 for grade 4; ≥ 24 for grade 3.

Grades for GU students (DIT620) are normally determined as follows:
≥ 42 for grade VG; ≥ 24 for grade G.

Help material: One A4 sheet with hand-written notes.
You may write on both sides of that sheet.
If you bring a sheet, it must be handed in with your answers to the exam
questions.

English language dictionaries are allowed.

Specific instructions:

• Please answer in English where possible. You may clarify your answers in Swedish if you
are not confident you have expressed yourself correctly in English.

• Begin the answer to each question on a new page.

• Write clearly; unreadable = wrong!

• Fewer points are given for unnecessarily complicated solutions.

• Indicate clearly if you make any assumptions that are not given in the question.

• Write the page number and question number on every page.

1 of 5

12 p
Question 1. Consider the following domain description.

An estate agent (Swedish: fastighetsmäklare) wants to use a database to manage
information about the properties it sells and its clients. Each property that the
agent is trying to sell is identified by a reference code. The address of each
property should be stored in the database, and also the property’s living area
(in m2) and guide price (in SEK).
Each of the estate agent’s clients has a unique client identifier. The client’s
name and telephone number should be stored in the database. A client can be
someone who is selling a property, or who is interested in buying a property or
both (i.e. a seller of one property (or more than one property) and a prospective
buyer for others). Information about who is selling a property should be stored
in the database.
When selling a property, the estate agent arranges one or more viewings — oc-
casions when prospective buyers can visit the property that is for sale. Each
viewing of a property takes place on a different date (although different proper-
ties could have viewings on the same date). Clients can attend several viewings,
and may view the same property more than once. The agent wants to record
information about which clients attend each viewing.
The agent wants to store information about the bids that clients give on a
property. The amount bid, and the date and time that the bid was given,
should be stored in the database. During the selling process, each client may
bid on the same property more than once.
When a property is sold, the buyer and the purchase price should be recorded
in the database.

a) Draw an E-R diagram that correctly models this domain.
(6p)

b) Translate this E-R diagram into a set of relations, clearly marking all references and
keys.
(6p)

10 p
Question 2. Suppose we have relation R(A, B, C, D, E, F,G) and functional dependencies

BC → D, DE → F , FA→ B, BC → G.

a) Relation R has three keys. State, with reasons, which two of the following are not
keys of R.

ABCD, ABCE, ACDE, ACDEG, ACEF .
(2p)

b) Decompose relation R to BCNF. Show each step in the normalisation process, and
at each step indicate which functional dependency is being used.
(3p)

c) State, with reasons, which FD(s) of relation R violate Third Normal Form (3NF).
(2p)

d) Decompose relation R to 3NF.
(3p)

2 of 5

11 p
Question 3. A database system used by a hospital to record information about patients and wards has

the following relations:

Wards(number, numBeds)
Patients(pid, name, year, gender)
PatientInWard(pid, ward)
Tests(patient, testDate, testHour, temperature, heartRate)

A ward is identified by its number. Attribute numBeds is the number of beds in that ward.

Patients are identified by their personal identification number. The name, year of birth
and gender (‘M’ or ‘F’) of each patient is stored in the Patients relation.

The ward to which each patient is assigned is stored in relation PatientInWard.

During their stay in hospital, patients will undergo routine tests. The date and hour of
each occasion when these tests are performed on a patient are recorded, and for each of
these tests the patient’s temperature and heart rate are measured and recorded in the
database. A patient will normally undergo these routine tests several times during their
stay in hospital.

a) Suggest keys and references for these relations.
Write SQL statements that create these relations with constraints in a DBMS.
(4p)

b) The number of patients in a ward cannot exceed the number of beds in that ward.
Write an assertion that checks this.
(3p)

c) If an attempt is made to insert a new row into relation PatientInWard, and that
ward is already full, then the patient should instead be assigned to a ward that has
an available bed. If there are several wards with available beds, then the patient
should be assigned to the one with the lowest ward number.
Write a trigger that implements this.
(When writing the trigger you may assume that the view described in question 5(b)
has already been defined.)
(4p)

7 p
Question 4. Assume the same relations as in Question 3:

Wards(number, numBeds)
Patients(pid, name, year, gender)
PatientInWard(pid, ward)
Tests(pid, testTime, temperature, heartRate)

a) Write a relational algebra expression that finds the temperature and heart rate mea-
sured in each test carried out on patients born before 1950.
(2p)

b) Write a relational algebra expression that finds the years for which the number of
male patients born in that year is higher than the number of female patients born in
that year.
(For full marks your solution should deal with years for which there are male patients
but no female patients.)
(5p)

3 of 5

10 p
Question 5. Assume the same relations as in Question 3:

Wards(number, numBeds)
Patients(pid, name, year, gender)
PatientInWard(pid, ward)
Tests(pid, testTime, temperature, heartRate)

a) Write an SQL query that finds the temperature and heart rate measured in each test
carried out on patients born before 1950.
(3p)

b) Create a view FreeBeds(ward, numBeds) where ward is a ward number, and numBeds
is the number of available beds in that ward.
(3p)

c) Write an SQL query that finds the years for which the number of male patients born
in that year is higher than the number of female patients born in that year.
(For full marks your solution should deal with years for which there are male patients
but no female patients.)
(4p)

4 p
Question 6. A system for booking cinema seats has a transaction T with the following three steps:

T1: list available seats
T2: book a seat
T3: confirm the booking that was made in step T2

In database transactions, what are dirty reads? Refer to transaction T in your answer.

Suppose users A and B both run transaction T at the same time (refer to these executing
transactions as TA and TB).
What isolation level(s) of TA and TB could result in TA performing dirty reads?

(4p)

4 of 5

6 p
Question 7. Consider the following piece of XML:

<Hospital>

<Patients>

<Patient pid="p001" name="smith" />

<Patient pid="p002" name="jones" />

<Patient pid="p003" name="green" />

</Patients>

<Tests>

<Test pid="p001" time="07:00" temp="36.8" heartRate="75" />

<Test pid="p001" time="11:00" temp="36.9" heartRate="77" />

<Test pid="p001" time="15:00" temp="36.7" heartRate="74" />

<Test pid="p002" time="10:00" temp="36.8" heartRate="66" />

<Test pid="p003" time="17:00" temp="36.8" />

<Test pid="p003" time="18:00" heartRate="60" />

</Tests>

</Hospital>

a) Write a Document Type Definition (DTD) for the XML that is given above.
(2p)

b) Assuming that the XML shown above is in file hospital.xml, write an XQuery expres-
sion that constructs the following result:

<Result>

<Patient name="smith" pid="p001">

<Test pid="p001" time="07:00" temp="36.8" heartRate="75"/>

<Test pid="p001" time="11:00" temp="36.9" heartRate="77"/>

<Test pid="p001" time="15:00" temp="36.7" heartRate="74"/>

</Patient>

<Patient name="jones" pid="p002">

<Test pid="p002" time="10:00" temp="36.8" heartRate="66"/>

</Patient>

<Patient name="green" pid="p003">

<Test pid="p003" time="17:00" temp="36.8"/>

<Test pid="p003" time="18:00" heartRate="60"/>

</Patient>

</Result>

(4p)

5 of 5

CHALMERS UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering

Examination in Databases, TDA357/DIT620

Thursday 20 December 2012, 14:00-18:00

Solutions

Updated 2012-12-22

1 of 7

12 p

Question 1. a) (Here is one suggestion. Several other designs are also accepted. For example, mod-
elling ‘SoldProperties’ as a subclass of property, or modelling ‘Buyers’ and ‘Sellers’
as subclasses of client, to model the different roles that clients can have.)

E-R diagram:

price

buyer

viewDate

Viewing

attends

Bid

Property

Client

BidOn

BidFrom

viewingOf

bidTime

ref

guidePrice

address

area

cid

name telephoneamount

seller

b) Clients(cid, name, telephone)

Properties(ref, address, guidePrice, area, price, seller, buyer)
seller → Clients.cid

buyer → Clients.cid

V iewings(property, viewDate)
property → Properties.ref

Attends(property, viewDate, client)
(property, viewDate) → V iewings.(property, viewDate)

Bids(property, client, bidT ime, amount)
property → Properties.ref

client → Clients.cid

2 of 7

10 p

Question 2. a) ABCD — does not identify all attributes.

ACDEG — this is a superkey but not a key, since attribute G can be removed and
the resulting set of attributes is a key.

b) Decompose on BC -> D

{BC}+ = {BCDG}

R1(_B,_C,D,G)

R2(B,C,A,E,F)

B,C -> R1.(B,C)

Decompose R2 on FA -> B

{FA}+ = {FAB}

R21(_F,_A,B)

R22(F,A,C,E)

F,A -> R21.(F,A)

Key of R22 is FACE

c) BC → G

Left side is not a superkey of R, and G is not prime in R.

d) R1(B, C, D, G)
R2(D, E, F)
R3(F, A, B)
R4(F, A, C, E)

3 of 7

11 p

Question 3. a) Wards(number, numBeds)
Patients(pid, name, year, gender)
PatientInWard(pid, ward)

pid → Patients.pid

ward → Wards.num

Tests(patient, testDate, testHour, temperature, heartRate)
patient → Patients.pid

CREATE TABLE Wards (

num INT PRIMARY KEY,

numBeds INT

);

CREATE TABLE Patients (

pid CHAR(10) PRIMARY KEY,

name VARCHAR(30),

year INT,

gender CHAR(1) CHECK (gender IN (’F’,’M’))

);

CREATE TABLE PatientInWard (

pid CHAR(10),

ward INT,

PRIMARY KEY (pid),

FOREIGN KEY (pid) REFERENCES Patients(pid)

ON DELETE CASCADE

ON UPDATE CASCADE,

FOREIGN KEY (ward) REFERENCES Wards(num)

ON DELETE CASCADE

ON UPDATE CASCADE

);

CREATE TABLE Tests (

patient CHAR(10),

testDate DATE,

testHour INT,

temperature REAL,

heartRate INT,

PRIMARY KEY (patient, testDate, testHour),

FOREIGN KEY (patient) REFERENCES Patients(pid)

ON DELETE CASCADE

ON UPDATE CASCADE

);

b) CREATE ASSERTION NotOverFullWard CHECK

(NOT EXISTS (

SELECT num

FROM Wards JOIN PatientInWard ON num=ward

GROUP BY num, numBeds

HAVING numBeds < COUNT(pid)

));

4 of 7

c) CREATE TRIGGER WardFull

BEFORE INSERT ON PatientInWard

REFERENCING NEW AS new

FOR EACH ROW

DECLARE numAvailable INT;

availableWard INT;

BEGIN

SELECT numBeds INTO numAvailable

FROM FreeBeds

WHERE ward = :new.ward;

IF numAvailable = 0 THEN

SELECT MIN(ward) into availableWard

FROM FreeBeds

WHERE numBeds > 0;

:new.ward := availableWard;

END IF;

END;

7 p

Question 4. a) Unfortunately the attributes names in Questions 3 and 4 are inconsistent, so we
accept either:

πtemperature,heartRate(σyear<1950(Patients) 1 Tests)

or:

πtemperature,heartRate(σyear<1950(Patients) 1patient=pid Tests)

(Similarly, we accept alternative solutions for Question 5(a).)

b) (πyear

(σm>f

(
γyear,COUNT (pid)ASm(σgender=′M ′(Patients))

1

γyear,COUNT (pid)ASf (σgender=′F ′(Patients))
)

)
)

∪
(

(πyear(σgender=′M ′(Patients))) \ (πyear(σgender=′F ′(Patients)))
)

5 of 7

10 p

Question 5. a) SELECT temperature, heartRate

FROM Patients, Tests

WHERE pid = patient and year < 1950

b) CREATE VIEW FreeBeds AS

SELECT num as ward, numBeds - COUNT(pid) AS numBeds

FROM Wards LEFT OUTER JOIN PatientInWard ON ward = num

GROUP BY num, numBeds

c) WITH

R1 AS

(SELECT year, COUNT(pid) AS m

FROM Patients

WHERE gender = ’M’

GROUP BY year),

R2 AS

(SELECT year, COUNT(pid) AS f

FROM Patients

WHERE gender = ’F’

GROUP BY year),

R3 AS

(SELECT year

FROM R1 NATURAL JOIN R2

WHERE m > f),

R4 AS

(SELECT year

FROM Patients

WHERE gender = ’M’),

R5 AS

(SELECT year

FROM Patients

WHERE gender = ’F’)

SELECT year FROM R3 UNION (SELECT year FROM R4 MINUS SELECT year FROM R5)

Using Oracle’s NVL function, we could have:

WITH

R1 AS

(SELECT year, COUNT(pid) AS m

FROM Patients

WHERE gender = ’M’

GROUP BY year),

R2 AS

(SELECT year, COUNT(pid) AS f

FROM Patients

WHERE gender = ’F’

GROUP BY year),

R3 AS

(SELECT year, m, NVL(f,0) AS f

FROM R1 NATURAL LEFT OUTER JOIN R2)

SELECT year FROM R3 WHERE m>f;

6 of 7

4 p

Question 6. A dirty read can occur when one transaction reads a data value that has been modified by
another, before that other transaction commits the change. For example, if TB modifies
the cinema seat bookings by booking a seat (in step T2), and this modified value is read by
TA (in step T1), and then transaction TB rolls back, undoing the change, then transaction
TA will have performed a dirty read.

In this case, a dirty read can occur when TA runs at isolation level READ UNCOMMIT-
TED, and TB runs at any isolation level.

6 p

Question 7. a) <!DOCTYPE Hospital [

<!ELEMENT Hospital (Patients, Tests) >

<!ELEMENT Patients (Patient*) >

<!ELEMENT Patient EMPTY >

<!ATTLIST Patient

pid ID #REQUIRED

name CDATA #REQUIRED >

<!ELEMENT Tests (Test*) >

<!ELEMENT Test EMPTY >

<!ATTLIST Test

pid IDREF #REQUIRED

time CDATA #REQUIRED

temp CDATA #IMPLIED

heartRate CDATA #IMPLIED >

]>

b) <Result>

{

let $h := doc("hospital.xml")

for $p in $h//Patient

let $tests := $h//Test[@pid = $p/@pid]

return <Patient pid="{$p/@pid}" name="{$p/@name}">{$tests}</Patient>

}

</Result>

7 of 7

