TMA690 Partiella Differentialekvationer

Johan Friemann

March 13, 2018

Lecture notes, and solutions to a selection of homework problems.

Notation: A multi index α is a vector in \mathbb{R}^d whose components α_j are non-negative integers. The length $|\alpha|$ of α is defined by

$$|\alpha| = \sum_{j=1}^{d} \alpha_j.$$

If $v: \mathbb{R}^d \to \mathbb{R}$ we may use the multi index notation to define partial derivatives of order $|\alpha|$:

$$D^{\alpha} = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} ... \partial x_k^{\alpha_k}}.$$

Example: $\alpha = (1, 0, 1), |\alpha| = 2$

$$D^{\alpha}v = \frac{\partial^2 v}{\partial x_1 \partial x_3}.$$

Notation: For $\xi \in \mathbb{R}^d$ we define $\xi^{\alpha} = \xi_1^{\alpha_1} \cdot \cdot \xi_d^{\alpha_d}$.

Example: $\alpha = (1, 0, 1), \ \xi = (\xi_1, \xi_2, \xi_3) \Rightarrow \xi^{\alpha} = \xi_1 \cdot \xi_3.$

In this course we will mainly consider linear partial differential equations of the form

$$\alpha u = \alpha(x, D)u = \sum_{|\alpha| \le m} a_{\alpha}(x)D^{\alpha}u = f$$
, in Ω

 Ω is an open connected set.

Definition: We say that the direction $\xi \in \mathbb{R}^d$, $\xi \neq 0$, is a characteristic direction for the operator $\alpha(x, D)$ at x if

$$\Lambda(\xi) = \Lambda(\xi, x) = \sum_{|\alpha| = m} a_{\alpha}(x) \xi^{\alpha} = 0.$$

Note: in the sum we only take $|\alpha| = m$ (principle part).

Definition: A (d-1)-dimensional surface is given locally as a function $F: \mathbb{R}^d \to \mathbb{R}$ $F(x_1, ..., x_d) = 0$. The normal is given as $\nabla F = (\frac{\partial F}{\partial x_1}, ..., \frac{\partial F}{\partial x_n})$ for $x \in \mathbb{R}^d$ on surface.

Main Examples:

Example: First order scalar equations:

$$\sum_{j=1}^{d} a_j(x) \frac{\partial u}{\partial x_j} + a_0(x)u = f, \quad \left(\sum_{|\alpha| \le 0} a_{\alpha}(x) D^{\alpha} u = f\right)$$

Characteristic equation:

$$\sum_{j=1}^{d} a_j(x) \cdot \xi_j = 0 \qquad \left(\sum_{|\alpha|=1} a_{\alpha}(x) \xi^{\alpha} = 0 \right)$$

Then ξ is a characteristic direction if ξ is perpendicular to $(a_1(x),...,a_d(x))$.

Example: Let

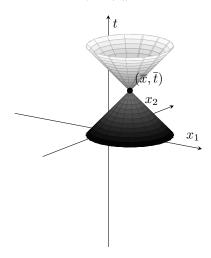
$$\Delta u = \sum_{j=1}^{d} \frac{\partial^2 u}{\partial x_j^2}$$

Poisson's equation: $-\Delta u = f$. Characteristic equation $\Lambda(\xi) = -(\xi_1^2 + ... + \xi_d^2) = 0 \Rightarrow \xi = 0$. This means that there are no characteristic directions.

Example: Heat equation $\frac{\partial u}{\partial t} - \Delta u = f$. We consider in \mathbb{R}^{d+1} with variables (x,t) $x \in \mathbb{R}^d$ and $t \in \mathbb{R}$. With variables (ξ,τ) the characteristic equatopm $\Lambda(\xi,\tau) = -(\xi_1^2 + ... + \xi_d^2) = -|\xi|^2 = 0$. For example the vector (0,0,0,...,0,1) is a characteristic direction and the plane $\tau = 0$ is a characteristic surface. $F(x_1,...,x_d,t) = t = 0$ $\nabla F = (0,...,0,1)$

Example: Wave equation: $\frac{\partial^2 u}{\partial t^2} - \Delta u = f$. Consider in \mathbb{R}^{d+1} with points $(x,t), x \in \mathbb{R}^d, t \in \mathbb{R}$. Characteristic equation with variables $(\xi,\tau), \xi \in \mathbb{R}^d, \tau \in \mathbb{R}$. $\Lambda(\xi,\tau) = -(\xi_1^2 + ... + \xi_d^2) + \tau^2 = 0$, $\tau = \pm |\xi|$. Characteristic directions $(\xi, \pm |\xi|), \xi \neq 0$ anything.

Characteristic surface: Given $\overline{x} \in \mathbb{R}^d$ and $\overline{t} \in \mathbb{R}$ consider the cone $|x - \overline{x}|^2 - |t - \overline{t}|^2 = 0$. $\nabla F = (2(x_1 - \overline{x_1}), ..., 2(x_d - \overline{x_d}), -2(t - \overline{t})) = 2(x - \overline{x}, t - \overline{t}) = 2(x - \overline{x}, \pm |x - \overline{x}|)$. This is of the form $(\xi, \pm |\xi|) \Rightarrow$ this cone is a characteristic surface.



Classification of 2:nd order PDE's:

Consider second order PDE with constant coefficients:

$$\sum_{j,k=1}^{d} a_{jk} \frac{\partial^2 u}{\partial x_j \partial x_k} + \sum_{j=1}^{d} b_j \frac{\partial u}{\partial x_j} + cu = f$$

where $a_{jk} = a_{kj}$, a_{jk} , b_j , c constants. Characteristic equation

$$\Lambda(\xi) = \sum_{j,k}^{d} a_{jk} \xi_{j} \xi_{k} = \xi \cdot A \xi \quad A = \begin{bmatrix} a_{11} & \dots & a_{1d} \\ \vdots & \ddots & \vdots \\ a_{d1} & \dots & a_{dd} \end{bmatrix}$$

A is symmetric, we can use the *Spectral Theorem*

$$A = PDP^{-1}, \ P^{-1} = P^T \quad D = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_d \end{bmatrix}$$

We introduce a change of variables $P\eta = \xi$ $\Lambda(\xi) = \Lambda(P\eta) = P\eta \cdot AP\eta = P\eta \cdot PDP^{-1}P\eta = P\eta \cdot PD\eta = P^TP\eta \cdot D\eta = \eta D\eta = \sum_{j=1}^d \lambda_j \eta_j^2.$

Definition: A differential equation is elliptic if all λ_j has the same sign. It is hyperbolic if all but one λ_j has the same sign and it parabolic if the remaining $\lambda_j = 0$.

Let V be a vector space over \mathbb{R} .

Definition: An inner product on V is a function $V \times V \to \mathbb{R}$ such that

- (1) $(\lambda u + \mu v, w) = \lambda(u, w) + \mu(v, w)$ $u, w \in V$ $\lambda, \mu \in \mathbb{R}$
- $(2) \quad (u,v) = (v,u) \quad u,v \in V$
- (3) (v,v) > 0 for all $v \in V, v \neq 0$

The pair $(V, (\cdot, \cdot))$ is called an inner product space.

Homework: Show that the following is true:

(a)
$$(v,v) = 0 \Leftrightarrow v = 0$$

(b)
$$(w, \lambda u + \mu v) = \lambda(w, u) + \mu(w, v)$$

Homework solution: This is shown by using our three axioms.

(a): We begin by showing \Rightarrow : Let $v = \lambda u$ where $u \neq 0$. Then it follows from axiom (1) that $(v,v) = (\lambda u, \lambda u) = \lambda(u, \lambda u)$. Then we use axiom (2) $\lambda(u, \lambda u) = \lambda(\lambda u, u) = \lambda^2(u, u)$. Since (v,v) = 0 it follows that $\lambda^2(u,u) = 0$ but we defined that $u \neq 0$ thus it follows from axiom (3) that (u,u) > 0 which means that $\lambda^2 = 0$, which implies that v = 0.

Now we show \Leftarrow : As before let $v = \lambda u$ where $u \neq 0$. By the same reasoning as before we have that $(v, v) = \lambda^2(u, u)$, and that (u, u) > 0. But since v = 0 and $u \neq 0$, λ has to be 0, which in turn means that (v, v) = 0.

(b): Axiom (2) gives us that $(w, \lambda u + \mu v) = (\lambda u + \mu v, w)$, axiom (1) then gives us that $(\lambda u + \mu v, w) = \lambda(u, w) + \mu(v, w)$. Finally we use axiom (2) again and we recieve $\lambda(u, w) + \mu(v, w) = \lambda(w, u) + \mu(w, v)$.

Example: Let C[a, b] denote the set of real-valued continous functions on [a, b] with addition (f + g)(x) = f(x) + g(x) and scalar multiplication $(\lambda f)(x) = \lambda f(x)$. Define $(f, g) = \int_a^b f(x)g(x)dx$.

Homework: Show that $(C[a,b],(\cdot,\cdot))$ is an inner product space.

Homework solution: We have to show that the three axioms hold for all the elements in C[a, b] with the given inner product.

- (1): Consider $(\lambda f + \mu g, h)$, where f, g, h are arbitrary elements in C[a, b] and λ, μ are arbitrary real constants. Our inner product gives us $\int_a^b (\lambda f(x) + \mu g(x))h(x)dx$, we use the linearity of the integral $\int_a^b (\lambda f(x) + \mu g(x))h(x)dx = \lambda \int_a^b f(x)h(x)dx + \mu \int_a^b g(x)h(x)dx$. Thus axiom (1) holds.
- (2): Consider f, g defined as before. According to our inner product $(f,g) = \int_a^b f(x)g(x)dx = \int_a^b g(x)f(x)dx = (g,f)$. This means that axiom (2) holds.
- (3): Consider $f \in C[a,b]$ such that f isn't the zero function on our interval. We have that $(f,f) = \int_a^b f(x)^2 dx$. $f(x)^2 \ge 0$ for all x and since it isn't the zero function f(x) has to non-zero somewhere, thus $f(x)^2 > 0$ somewhere. Since we consider $f \in C[a,b]$ $f(x)^2$ has to be non-zero on at least some interval in [a,b] and 0 at least zero everywhere else, thus by the definition of the integral $\int_a^b f(x)^2 dx > 0 \Rightarrow (f,f) > 0$. Axiom (3) holds.

Definition: A linear functional is a function $f: V \to \mathbb{R}$ that is linear $f(\lambda u + \mu v) = \lambda f(u) + \mu f(v), \ \lambda, \mu \in \mathbb{R} \ u, v \in V.$

Definition: A bilinear form $a: V \times V \to \mathbb{R}$ is a function such that $a(\lambda u + \mu v, w) = \lambda a(u, w) + \mu a(v, w)$ and $a(w, \lambda u + \mu v) = \lambda a(w, u) + \mu a(w, v), \ u, v, w \in V$ $\lambda, \mu \in \mathbb{R}$. It is symmetric if a(u, v) = a(v, u) and it is positive definite if a(v, v) > 0 for all $v \in V$ such that $v \neq 0$.

Homework: Let $V = (C[a, b], (\cdot, \cdot))$ be an inner product space with the inner product $(f, g) = \int_a^b f g dx$. Show the following:

- (a): $F(v) = \int_a^b v(x) dx$ is a linear functional.
- **(b):** F(v) = v(a) is a linear functional.
- (c): $a(f,g) = \int_a^b f(x)g(x)(1+x^2)dx$ is a positive definite bilinear form.

Homework solution: We use the definitions:

- (a): Let v, u be elements from C[a, b] and λ, μ elements from \mathbb{R} . Now consider $F(\lambda v + \mu u) = \int_a^b \lambda u(x) + \mu v(x) dx = \lambda \int_a^b v(x) dx + \mu \int_a^b u(x) dx$. The integrals evaluate to real numbers. This mapping fulfills the condition defined above, it is linear in its argument and it maps functions to real numbers.
- (b): Let u, v and λ, μ be defined as above. Now consider $F(\lambda v + \mu u) = (\lambda v + \mu u)(a) = \lambda v(a) + \mu u(a)$. This mapping fulfills the condition defined above, it is linear in its argument and it maps functions to real numbers.
- (c): Let $f,g,h\in C[a,b]$ and let $\lambda,\mu\in\mathbb{R}$. We begin by showing it's a bilinear form. $a(\lambda f+\mu g,h)=\int_a^b(\lambda f(x)+\mu g(x))h(x)(1+x^2)dx=$ $\lambda\int_a^bf(x)h(x)(1+x^2)dx+\mu\int_a^bg(x)h(x)(1+x^2)dx=\lambda a(f,h)+\mu a(g,h).$ We can see that if it is linear in its first argument a has to be linear in its second argument, following from elementary properties of the integral. To show that it is positive definite we consider $a(f,f)=\int_a^bf(x)^2(1+x^2)dx$ and let f not be the zero function. With $f\in C[a,b]$ we have that it has to be non-zero on at least some interval in [a,b], thus $f(x)^2$ is greater than zero on at least some interval in [a,b] and at least zero everywhere else. Also, $(1+x^2)>0$ on [a,b]. Thus the integral has to be >0, which means that a is positive definite.

Definition: We say that $u \in V$ and $v \in V$ are orthogonal if (u, v) = 0. Notation: $u \perp v$.

Definition: Let V be a vector space over \mathbb{R} then a function $||\cdot||:V\to\mathbb{R}_+$ is a norm on V if:

- (a) $||v|| > 0 \quad \forall v \neq 0$
- (b) $||\lambda v|| = |\lambda|||v|| \quad \forall v \in V, \ \lambda \in \mathbb{R}$
- (c) $||u+v|| \le ||u|| + ||v|| \quad u, v \in V$

Note: $v = 0 \Leftrightarrow ||v|| = 0$. The pair $(v, ||\cdot||)$ is called a normed space.

Homework:Let V = C[a,b] be a vector space with the norm $||f|| = \sup_{x \in [a,b]} |f| = \max_{x \in [a,b]} |f|$. Show that this is a normed space.

Homework solution: We have to show that the given norm fullfills the axioms given any element from V.

(a): $|f| \ge 0$, and since according to the axiom f can't be the zero function it has to be > 0

at least on some interval. If we take the maximum value on that interval we will recieve a real number > 0.

(b): This follows directly from the properties of the supremum/maximum. $\sup_{x \in [a,b]} |\lambda f| = \lambda \sup_{x \in [a,b]} |f|.$

(c): Let $f,g \in C[a,b]$ Consider $\sup_{x \in [a,b]} |f+g|$ according to the triangle inequality for absolute values we have that $\sup_{x \in [a,b]} |f+g| \le \sup_{x \in [a,b]} (|f|+|g|) \le \sup_{x \in [a,b]} |f| + \sup_{x \in [a,b]} |g|$. Thus $||f+g|| \le ||f|| + ||g||$.

If $(V, (\cdot, \cdot))$ is an inner product space then $||v|| = (v, v)^{1/2}$ is a norm.

Proposition: Cauchy-Schwartz inequality: Let $(V, (\cdot, \cdot))$ be an inner product space. Then $|(u, v)| \leq ||u|| ||v||$, $u, v \in V$ with equality if and only if $u = \lambda v$ for some $\lambda \in \mathbb{R}$.

Proof: If v=0 the result holds trivially. Let $t\in\mathbb{R}$ and consider $0\leq (u+tv,u+tv)=||u||^2+2t(u,v)+t^2||v||^2:=f(t)$. This is a quadratic function, since it's greater than 0 for all t it also has to be greater than 0 in its minimum. It can easily be shown that the minimum is $a=-\frac{(u,v)}{||v||^2}$.

$$0 \leq f(a) = ||u||^2 - 2\frac{(u,v)^2}{||v||^2} + \frac{(u,v)^2||v||^2}{||v||^4} = ||u||^2 - \frac{(u,v)^2}{||v||^2} \\ \Rightarrow (u,v)^2 \leq ||u||^2||v||^2 \\ \Rightarrow |(u,v)| \leq ||u||||v||$$

If
$$u = -tv$$
 we have equality.

Proposition Triangle inequality: $||u+v|| \le ||u|| + ||v||$.

Proof: We prove this by using Cauchy-Schwartz inequality

$$\begin{aligned} ||u+v||^2 &= (u+v,u+v) = ||u||^2 + 2(u,v) + ||v||^2 \le ||u||^2 + 2||u||||v|| + ||v||^2 \\ &= (||u|| + ||v||)^2 \Rightarrow ||u+v|| \le ||u|| + ||v|| \end{aligned}$$

Homework: Prove the Parallellogram identity: $||u+v||^2 + ||u-v||^2 = 2(||u||^2 + ||v||^2)$

Homework solution: We simply use the axioms and the definition of the norm!

$$||u+v||^2 + ||u-v||^2 = (u+v, u+v) + (u-v, u-v) = (u, u+v) + (v, u+v) + (u, u-v) - (v, u-v) = (u, u) + (u, v) + (v, u) + (v, v) + (u, u) - (u, v) - (v, u) + (v, v) = 2(||u||^2 + ||v||^2)$$

Definition: Let $(x_n) \subset V$ be a sequence in $(V, ||\cdot||)$, we say $x_n \to x \in V$ as $n \to \infty$ alternatively written as $\lim_{n \to \infty} x_n = x$ if $\lim_{n \to \infty} ||x_n - x|| = 0$, with $\varepsilon - \delta$ -notaion: $(\forall \varepsilon > 0)(\exists N) : n \ge N \Rightarrow ||x_n - x|| < \varepsilon$.

Definition: A sequence is a Cauchy-sequence if $(\forall \varepsilon > 0)(\exists N) : m, n \ge N \Rightarrow ||x_n - x_m|| < \varepsilon$. It can be stated informally as: $\lim_{m,n\to\infty} ||x_n - x_m|| = 0$.

Fact: If (x_n) is convergent then x_n is a Cauchy-sequence. \mathfrak{Z} The converse is not true! \mathfrak{Z}

A normed space is called complete if every Cauchy-sequence converges. A complete normed space is called a *Banach space* and a complete inner product space is called a *Hilbert space*.

Example: $C[a,b], ||f|| = \sup_{x \in [a,b]} |f|$ is a Banach space.

5.

Homework: Show that C[a,b], $||f|| = |\int_a^b f(x)^2|^{1/2}$ is not complete.

Homework solution:

Find a function that is Cauchy but that doesn't converge to a continous function. Try a function which converges to a step function.

Example:

$$V = \{(x_n)\}, \quad x_n \in \mathbb{R}, \quad \sum_{n=1}^{\infty} |x_n|^2 < \infty, \quad ((x_n), (y_n)) = \sum_{n=1}^{\infty} x_n \cdot y_n$$

 $(V,(\cdot,\cdot))$ is complete.

Definition: Let V, W be normed spaces. A mapping $B: V \to W$ is linear if $B(\lambda u + \mu v) = \lambda B u + \mu B v$ $u, v \in V$ $\lambda, \mu \in \mathbb{R}$. It is bounded if there is c > 0 such that $||Bv||_W \le c||v||_V$ for all $v \in V$. We nay then define the norm of B by

$$||B|| = \sup_{v \in V, \ v \neq 0} \frac{||Bv||_W}{||v||_V} = \sup_{||v||_V = 1} ||Bv||_W = \inf\{c \in \mathbb{R} : ||Bv||_W \le c||v||_V \text{ for all } v \in V\}$$

$$\Rightarrow ||Bv||_W \le ||B|| \cdot ||v||_V$$

Homework: Show the equalities above.

Homework solution:

Definition: We denote the set of bounded linear operators by $\mathcal{B}(V, W)$ if V = W, $\mathcal{B}(V)$. This can be made to be a vector space:

$$(B_1 + B_2)v = B_1v + B_2v \quad v \in V$$

 $(\lambda B)v = \lambda Bv \quad \lambda \in \mathbb{R}, \ v \in V$

Then $\mathcal{B}(V, W)$ is a normed space and if W is complete so is $\mathcal{B}(V, W)$.

Homework: Show that ||B|| defined as above is a norm.

Homework solution:

Lemma: $B \in \mathcal{B}(V, W) \Leftrightarrow B$ is continous that is $x_n \to x \Rightarrow Bx_n \to Bx$.

Definition: Let V be a normed space. The space of continuous linear functionals is $\mathcal{B}(V,\mathbb{R})$. Notation: $V^* = \mathcal{B}(V,\mathbb{R})$, V^* is called the dual space of V. Since \mathbb{R} is complete so is V^* .

A bilinear form $a: V \times V \to \mathbb{R}$ is bounded if there is c > 0 sicj that $|a(u,v)| \le c||u|| \cdot ||v||$.

Definition: The ball centered at $v_0 \in V$ with radius r > 0 is $B_r(r_0) = \{v \in V \mid |v - v_0|| < r\}$.

Definition: A set $A \subset V$ is open if for every $v_0 \in A$ there is $r = r(v_0)$ such that $B_r(v_0) \subset A$.

Definition: A is closed if $A^c = V \setminus A$ is open.

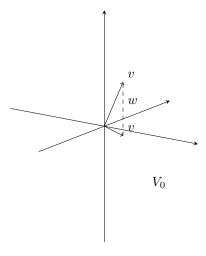
Homework: Show that A is closed $\Leftrightarrow (x_n) \in A, x_n \to x \in V \Rightarrow x \in A$.

Homework solution:

Definition: $A \in V$ is a dense subset of V of for all $v \in V$ there is $v_n \in A$ $v_n \to v$.

Theorem: Let V be a Hilbert space and $V_0 \subset V$ be a closed subspace. Then any $v \in V$ can be uniquely be written as $v = v_0 + w$ where $v_0 \in V_0$ and $w \perp v_0$. The element v_0 can be

characterised as th unique element in V_0 such that $||v-v_0||=\min\{||v-u||,u\in V_0\}$. The element v_0 is denoted by $P_{V_0}v$.



Corollary: V is a Hilbert space, $V_0 \subset V$ is a closed subspace, $V_0 \neq V$. Then $w \in V \setminus V_0$, $w \perp v_0$

Proposition: $V_0 \neq V \Rightarrow \exists w_0 \in V \setminus V_0, \quad w_0 \neq 0$. Projection theorem: $w_0 = v_0 + w, \quad w \perp v_0 \quad w \neq 0 \text{ as } w_0 \neq v_0$.

Theorem: (Riesz Representation Theorem) Let V be a Hilbert space and $L: V \to \mathbb{R}$ be a bounded linear functional on V (ie. $L \in V^*$). Then there is a unique $u \in V$ such that L(V) = (v, u) for all $v \in V$. Furthermore $||L||_V = ||u||$.

Proof: See the book.

Note: The Riesz representation theorem identifies continous linear functionals with elements of the Hilbert space V.

Homework: Show that the map $\Phi: L \to u \ (V^* \to V)$ is linear, surjective and isometric. (V and V^* are isometrically isomorphic).

Homework solution:

Often in this course we will study the following problem: Let V be a Hilbert space and $L: V \to \mathbb{R}$ be a bounded and $a: V \times V \to \mathbb{R}$ bilinear positive definite. Problem: Find $u \in V$ such that a(u, v) = L(v) for all $v \in V$. Call this problem (V).

Definition: A bilinear form $u: V \times V \to R$ is called coercive of there is an $\alpha > 0$ sich that $a(v,v) \ge \alpha ||v||^2$ for all $v \in V$. Note that coercive implies positive definite, but positive definite does not imply coercive. In finite dimensions however, positive definite and coercive is equivalent.

If $a: V \times V \to \mathbb{R}$ is positive definite, symmetric and bilinear, then a is an inner product on V.

If a is coercive and bounded, then the norm (energy norm) $||v||_a = a(v,v)^{1/2}$ is equivalent to the original norm $||\cdot||$. $\alpha ||v||^2 \le a(v,v) \le M||v||^2$.

In summary: If $a: V \times V \to \mathbb{R}$ is bilinear, coercive, symmetric and bounded then: the energy norm $||\cdot||_a$ and $||\cdot||$ are equivalent and therefore $(V, ||\cdot||_a)$ is complete (hence a Hilbert space). Also L is bounded linear on $(V, ||\cdot|| \Rightarrow)$ bounded linear on $(V, ||\cdot||_a)$.

In this case the Riesz representation theorem on $(V, ||\cdot||_a)$ yields that there is an unique $u \in V : L(v) = a(v, u) = a(u, v)$ for all $v \in V$. Thus equation (V) has a unique solution.

Energy estimate: We may bound the norm of the solution in terms of L: $\alpha ||u||^2 \le a(u,u) = L(u) \le ||L||_{V^*}||u||_V \Rightarrow ||u||_V \le \frac{1}{\alpha}||L||_{V^*}.$

The solution to (V) may be characterized through a minimization problem:

Theorem: If $a: V \times V \to \mathbb{R}$ is symmetric and positive definite then u is a solution to problem $(V) \Leftrightarrow F(u) \leq F(v)$ for all $v \in V$ $F(u)) = \frac{1}{2}a(u,u) - L(u)$

Proof: Suppose that u is a solution to (V). Set $w = v - u \Rightarrow v = u + w$. Then

$$F(v) = F(u+w) = \frac{1}{2}a(u+w, u+w) - L(u+w) = \frac{1}{2}a(u, u) - L(u) + a(u, w) - L(w) + \frac{1}{2}a(w, w)$$

The sum of the first two terms are equal to F(u) by definition. The som of the second two terms are equal to 0 since u is a solution. Thus we have $F(v) \ge F(u)$ since $a(w, w) \ge 0$.

Now suppose $F(u) \leq F(v)$ for all $v \in V$. Consider $g(t) = F(u + tv) \geq F(u) = g(0)$, where t is a

real parameter. we have

$$g(t) = F(u+tv) = \frac{1}{2}a(u+tv,u+tv) - L(u+tv) = \frac{1}{2}t^2a(v,v) + (a(u,v)-L(v))t + \frac{1}{2}a(u,u) - L(u)tv = \frac{1}{2}t^2a(v,v) + \frac{1}{2}(u,v) + \frac{1}{2}(u,$$

This is a quadratic in t and it has a minimum at 0 thus $0 = q'(0) = a(u, v) - L(v) \Rightarrow a(u, v) = L(u)$

Note: F is called the energy functional and (V) the variational equation for F.

There is an extension when a is non-symmetric.

Theorem: (Lax-Milgram) Let V be a Hilbert space and $a: V \times V \to \mathbb{R}$ be a bounded coercive bilinear form and $L: V \to \mathbb{R}$ be a bounded linear functional then there is a unique $u \in V$ sich that a(u, v) = L(v) for all $v \in V$. (That is (V) has a unique solution)

Note: Unlike the symmetric case before there is no characterization of u through the minimization of an energy functional. But we still have $||u|| \leq \frac{1}{\alpha} ||L||_{V^*}$.

Function spaces: Let $\Omega \subset \mathbb{R}^d$ then $\overline{\Omega}$ denotes the closure of Ω .

$$\overline{\Omega} = \bigcap_{\Omega \subset A, A \text{ is closed}} A$$

An example is that the closure of a ball is the ball with its boundary.

Let Ω be a domain (\equiv open, connected). $C(\Omega)$: vector space of continuous functions $\Omega \to \mathbb{R}$.

If Ω is a bounded domain then $C(\overline{\Omega})$ is a Banach space with norm $||V||_{C(\overline{\Omega})} = \sup_{x \in \overline{\Omega}} |v(x)| = \max_{x \in \overline{\Omega}} |v(x)|$

 $C^k(\Omega)$: space of k-times continually differentiable functions on Ω : then $D^{\alpha}v$ is continuous for all $|\alpha| \leq k$.

 $C^k(\Omega): \{v \in C^k(\Omega): D^\alpha v \in C(\overline{\Omega}), |\alpha| \leq k\}.$ This is a Banach space if we set $||v||_{C^k(\overline{\Omega})} = \sum_{|\alpha| \leq k} ||D^\alpha_v||_{C(\overline{\Omega})}.$ In 1D: $\Omega = (0,1)$:

$$||v||_{C^2(\Omega)} = \sup_{x \in [0,1]} |v(x)| + \sup_{x \in [0,1]} |v'(x)| + \sup_{x \in [0,1]} |v''(x)|$$

A function $V: \Omega \to \mathbb{R}$ has compact support if v = 0 outside of a compact set (compact \Leftrightarrow bounded and closed in \mathbb{R}^d)

 $C_0^k(\Omega)$ is the space of functions in $C^k(\Omega)$ with compact support.

 $C_0^{\infty}(\Omega): v \in C_0^k(\Omega)$ for every k.

Definition: Let $\Omega \subset \mathbb{R}^d$ be a domain. To begin with let, $1 \leq p < \infty$. A function $v \in L^p(\Omega)$ if $\int_{\Omega} |v(x)|^p dx < \infty$. We define $||v||_{L^p(\Omega)} = \left(\int_{\Omega} |v(x)|^p dx\right)^{1/p}$. Here follows a couple of notes regarding this definition.

Note 1: Here $\int_{\Omega} f(x)dx$ denotes the *Lebesgue* integral. It coincides with the Riemann integral for bounded Riemann integrable functions (at least on bounded Ω). For such functions the Lebesgue integral is an extension of the Riemann integral.

Note 2: There are many functions that are not Riemann integrable but are Lebesgue integegrable.

Example: $\Omega = (0,1)$, consider the Dirichlet-function:

$$v(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

Note that v is very simple $v=\chi_{\mathbb{Q}\cap(0,1)}$. It's easy to see that v is not Riemann integrable, however it is Lebesgue integrable and $\int_{\Omega}v(x)dx=0$.

Note 3: The Lebesgue integral behaves much nicer than the Riemann integral if one wants to exchange limits and integrals.

Example: Suppose $f_n(x) \to f(x), f \in \Omega$. Then $||f_n(x)| \le g(x), g(x) \in L^1(\Omega) \Rightarrow \int_{\Omega} f(x) dx = \lim_{n \to \infty} \int_{Omega} f(x) dx$. This is called Lebesgue's dominated convergence theorem.

Note 4: We consider two functions v and w equivalent, or we say that they are equal almost everywhere (a.e) if $v(x) \neq w(x)$ only for $x \in A$ where A has Lebesgue measure 0, defined as follows: Let $c = (a_1, b_1) \times ... \times (a_d, b_d) \subset \mathbb{R}^d$ be a hypercube in \mathbb{R}^d . The Lebesgue measure m(c) of c is defined by $m(c) = \prod_{i=1}^d (b_i - a_i)$.

Definition: A set $A \subset \mathbb{R}^d$ has Lebesgue measure 0 if for every $\varepsilon > 0$ there are countably many hypercubes c_n , n = 1, 2, ... such that $A \subset \bigcup_{n=1}^{\infty} c_n$ and $\sum_{n=1}^{\infty} m(c_n) < \varepsilon$. Note that if $A = \{a\} \Rightarrow m(A) = 0$, if A is countable then m(A) = 0.

Example: Consider \mathbb{R}^2 then the real line $A = \{(x,0), x \in \mathbb{R}\}$ has Lebesgue measure 0 (a line has 0 "area"). In general if $\Omega \subset \mathbb{R}^d$ a domain, then the boundary Γ of Ω ($\Gamma = \overline{\Omega} \setminus \Omega$) has Lebesgue measure 0. for example $\{(x,0), x \in \mathbb{R}\} = \Gamma$, $\Omega = \{(x,y) : x \in \mathbb{R} \ y > 0\}$.

Note 5: If v = w a.e, then if v is Lebesgue integrable then so is w and $\int_{\Omega} v dx = \int_{\Omega} w dx$.

Example: With the Dirichlet-function from before $v \equiv 0$ a.e because $m(\mathbb{Q} \cap (0,1)) = 0$ thus v is Lebesgue integrable with Lebesgue integral 0.

Note 6: Elements of the space $L^p(\Omega)$ are equivalence classes of functions that are equal a.e. Therefore in general we cannot talk about point values of $v \in L^p(\Omega)$, that is v(x) for fixed x (unless there is a continuous representation in the equivalence class).

Note 7: $L^p(\Omega)$ is complete and hence a Banach space. $p=2,\ L^2(\Omega)$ is a Hilbert space with inner product $(u,v)=\int_{\Omega}uvdx$ where this is the Lebesgue integral.

Note 8: Regarding $p = \infty$. We say that v is essentially bounded if there is a M > 0 such that $|v(x)| \leq M$ for almost all x.

$$||v||_{L^{\infty}} = \inf\{M: |v(x)| \leq M \text{ for almost all } x\} \stackrel{\text{def}}{=} \operatorname{ess sup}|v(x)| \neq \sup_{x \in \Omega} |v(x)|$$

 L^{∞} is a Banach space.

Example: $\Omega = (0,1)$ and for n = 1, 2, ...

$$\begin{cases} 1 & \text{if } x \neq \frac{1}{n} \\ n & \text{if } x = \frac{1}{n} \end{cases}$$

 $\sup\nolimits_{x\in\Omega}|v(x)|=\infty\text{ but ess }\sup\limits_{x\in\Omega}|v(x)|=1.$

Note 9: If the boundary Γ of Ω is smooth enough (say, Lipschitz continous) then $C_0^k(\Omega)$ (also $C_0^{\infty}(\Omega)$) is dense in $L^p(\Omega)$, $1 \leq p < \infty$. That is for every $v \in L^p(\Omega)$ there are $(v_n) \subset C_0^k\Omega$ (resp $C_0^{\infty}(\Omega)$) such that $||v_n - v||_{L^p} \to 0$ as $n \to \infty$. This does not hold for L^{∞} .

Sobolov spaces: We need the concept of weak (or generalized or distrubutional) derivatives. We begin with a lemma.

Lemma: Suppose that V and W are Banach spaces and $A \subset V$ is a dense subspace of V (dense: $\forall v \in V \exists (v_n) \subset A : v_n \to v$). Suppose that $B : A \to W$ is a bounded linear operator. Then there is a unique linear continuous (\equiv bounded) extension \tilde{B} of B to the whole of V such that $||\tilde{B}||_{\mathcal{B}(V,W)} = ||B||_{\mathcal{B}(A,W)}$.

Let $\Omega \subset \mathbb{R}^d$ be a domain. Let $v \in C^1(\overline{\Omega})$. Let $\Phi \in C^1_0(\Omega)$. Integrate by parts:

$$(*) = \int_{\Omega} \frac{\partial v}{\partial x_i} \Phi dx = -\int_{\Omega} v \frac{\partial \Phi}{\partial x_i} dx$$

This is a special case of Greens formula (see introduction of the book) $w = (w_1, ..., w_d)$ vector field, ψ scalar field then

$$\int_{\Omega} w \cdot \nabla \psi dx = \int_{\Gamma} w \cdot n\psi dx - \int_{\Omega} \nabla w \psi dx$$

n is the outward facing unit normal of Γ .

If $v \in L^2(\Omega)$ it might not have a classical derivative. One can define the generalized (weak) derivative denoted by $\frac{\partial v}{\partial x_i}$ to be a functional with the following properties:

Definition: The weak derivative is defined as

$$\frac{\partial v}{\partial x_i}(\Phi) = L(\Phi) = -\int_{\Omega} v \frac{\partial \Phi}{\partial x_i} dx, \ \Phi \in C_0^1(\Omega)$$

Suppose that L is bounded that is there is a M > 0 such that $|L(\Phi)| \leq M||\Phi||_{L^2} \ \forall \Phi \in C_0^1(\Omega)$. Then by the lemma ther is a continous linear extension of L to the whole of L^2 (because C_0^1 is dense in L^2). By Riesz representation theorem there is an unique $w \in L^2$ such that $L(\Phi) = (\Phi, w) \ \Phi \in L^2$. Therefore in this case

$$\int_{\Omega}v\frac{\partial\Phi}{\partial x_{i}}dx=L(\Phi)=\int_{\Omega}\Phi wdx\;\forall\Phi\in C_{0}^{1}$$

In this case we say that $\frac{\partial v}{\partial x_i}$ is in L^2 . We still denote w by $\frac{\partial v}{\partial x_i}$. With this notation

$$(**) = -\int_{\Omega} v \frac{\partial \Phi}{\partial x_i} dx = \int_{\Omega} \Phi \frac{\partial v}{\partial x_i}, \ \forall \Phi \in C_0^1(\Omega)$$

Comparing (*) with (**) we say that for $v \in C_0^1(\overline{\Omega})$ the weak derivative coincides with the classical derivative. Note: weak derivative allows for integration by parts in the appropriate way.

Let α be a multiindex and $v \in L^2(\Omega)$. Define $D^{\alpha}v$ as a functional:

$$(D^{\alpha}v)(\Phi) = L(\Phi) = (-1^{|\alpha|} \int_{\Omega}) v D^{\alpha} \Phi dx, \quad \Phi \in C_0^{|\alpha|}(\Omega)$$

If $|L(\Phi)| \leq : ||\Phi||_{L^2}$ then since $\Phi \in C_0^{|\alpha|}(\Omega)$ is dense, there is a unique continuous extension of L to the whole of L^2 . By the Riesz representation theorem there is $w \in L^2$ which we denote by $D^{\alpha}v$ such that $(w,\phi) = (D^{\alpha}v,\Phi) = L(\Phi) = (-1)^{|\alpha|} \int_{\Omega} v D^{\alpha} \Phi dx = (-1)^{|\alpha|} (v,D^{\alpha}\Phi), \forall \Phi \in C_0^{|\alpha|}(\Omega).$

Definition: The Sobolev space $H^k(\Omega)$ is defined by:

$$H^k(\Omega) = \{ v \in L^2(\Omega) : D^{\alpha}v \in L^2(\Omega) \ |\alpha| \le k \}$$

We endow H^k with the inner product

$$(u,v)_{H^k} = (u,v)_k = \sum_{|\alpha| \le k} \int_{\Omega} D^{\alpha} u D^{\alpha} v dx$$

and with the norm:

$$||u||_{H^k} = ||u||_k = \left(\sum_{|\alpha| \le k} \int_{\Omega} (D^{\alpha}u)^2 dx\right)^{1/2}$$

Note: For H^0 we have $||v||_0 = ||v||_{H^0} = ||v||_{L^2} = ||v||$. For H^1 we have:

$$||v||_1 = \left(\int_{\Omega} v^2 + \sum_{j=1}^d \left(\frac{\partial v}{\partial x_j}\right)^2 dx\right)^{1/2}$$

and for H^2 we have:

$$||v||_2 = \left(\int_{\Omega} v^2 + \sum_{j=1}^d \left(\frac{\partial v}{\partial x_j}\right)^2 + \sum_{j=1}^d \sum_{k=1}^d \left(\frac{\partial^2 v}{\partial x_j \partial x_k}\right) dx\right)^{1/2}$$

note that the H^2 norm contains all the mixed second order derivatives not just the Laplacian! We continue by listing two important properties of the Sobolev spaces.

Property 1: H^k is a Hilbert space

Property 2: $C^l(\overline{\Omega})$ is a dense subspace of $H^k(\Omega)$ for $l \geq k$, this holds if $\Gamma = \partial \Omega$ is smooth enough.

Definition: The seminorm $|\cdot|_k$ is defined by:

$$|v|_k = \left(\sum_{|\alpha|=k} \int_{\Omega} (D^{\alpha}v)^2 dx\right)^{1/2}$$

This is not a norm, for example $|v|_k = 0$ for v = constant. Still the triangle inequality holds and $|\lambda v|_k = \lambda |v|_k$.

Definition: We define the trace. This is the generalization of the boundary value of a function. If $v \in C^k(\overline{\Omega})$ then we may define the boundary value γv of v by restricting v to $\Gamma: (\gamma v)(x) = v(x) \ x \in \Gamma$. Then γv is a continuous function on Γ . We would like to extend this concept to $v \in H^1$.

Problem: Γ has the Lebesgue measure 0 in \mathbb{R}^d . As functions in H^1 are only defined as L^2 functions the point values on Γ are not well defined.

Idea: We define the boundary space $L^2(\Gamma)$ as the space of functions on Γ such that the surface integral $\int_{\Gamma} v^2 ds < \infty$, with the norm $||v||_{L^2(\Gamma)} = \left(\int_{\Gamma} v^2 ds\right)^{1/2}$. We will first define the boundary value of a function $v \in C^1(\Omega) \subset H^1$ by restriction of v to the boundary and we try to extend this notion to the whole of H^1 using the denseness of $C^1(\Omega)$ in H^1 .

Lemma: Let $\Omega = (0,1)$. Then there is a constant c > 0 sich that $|v(x)| \leq C||v||_1$ for all $c \in C^1(\overline{\Omega})$ and $x \in \overline{\Omega}$ (in particular we may take x = 0, 1).

Proof: For $x, y \in \Omega$ and $v \in C^1(\overline{\Omega})$ we have $v(x) = v(y) + \int_y^x v'(s)ds$ (this is nothing but usage of the fundamental theorem of integral calculus). Then we use the triangle inequality, the triangle inequality for integrals and Cauchy-Schwarz

$$|v(x) \le |v(y)| + |\int_y^x 1 \cdot v'(s) ds| \le |v(y)| + \int_y^x 1 \cdot |v'(s)| ds \le |v(y)| + \left(\int_0^1 1^2 ds\right)^{1/2} \left(\int_0^1 |v'(s)|^2 ds\right)^{1/2} ds$$

The limits of integration can change from x, y to 0, 1 since the absolute value makes the integral grow when the interval grows, thus it is fine to make enlarge our limits to the whole of Ω in our inequality. Then we use $(a + b)^2 \le 2a^2 + 2b^2$:

$$|v(x)|^2 \le 2\left(|v(y)|^2 + \int_0^1 |v'(s)|^2 ds\right)$$

Since the righthand side is independent of y and the second term on the lefthand side is independent of y we can take the integral with respect to y on both sides (since the length of our integral is 1 these objects integrate like multiplication with 1) and acquire

$$|v(x)|^2 \le 2 \left(||v||_{L^2}^2 + ||v'||_{L^2}^2 \right) = 2||v||_1^2$$

By continuity this result holds for $x \in \overline{\Omega}$. We have $|v(1)| = \lim_{n \to 1} |v(x)|$ and $x_n \to x$, $|x_n| \le m \Rightarrow |x| \le m$. This concludes the proof.

Theorem: (Trace theorem) Let $\Omega \in \mathbb{R}^d$ be a bounded domain. Suppose that $\Gamma = \partial \Omega$ is a polygon or smooth. We define the trace operator γ by $\gamma : C^1(\overline{\Omega}) \subset H^1(\Omega) \to C^1(\Gamma) \subset L^2(\Gamma)$ $(\partial v)(x) = v(x) \ x \in \Gamma$. Then there is a bounded linear extension of γ to the whole of $H^1(\Omega)$ still denoted by γ . In particular there is a c > 0 sich athat $||\gamma v||_{L^2(\Gamma)} \le c||v||_{H^1(\Omega)} \ \forall v \in H^1(\Omega)$.

Note: In this settome the "boundary value" of a function in $H^1(\Omega)$ only exists as a function on $L^2(\Gamma)$.

Proof: γ is clearly linear. By homework problem 2.5 we only need to show that $||\gamma v||_{L^2(\Gamma)} \leq c||v||_{H^1} \ v \in C^1(\overline{\Omega})$ as $C^1(\overline{\Omega})$ is dense in $H^1(\Omega)$. We will prove this for $(0,1) \times (0,1)$ We will only consider one side of the rectangle, the same reasoning as follows holds for the other three. Let $(x_1, x_2) \in \Omega$ we use the lemma applied to the function $x \to v(x_1, x_2)$ and $x_1 = 0$ (right side of the rectangle).

$$v(0,x_2)^2 \leq 2 \left(\int_0^1 v(x_1,x_2)^2 dx_1 + \int_0^1 (\frac{\partial v(x_1,x_2)}{\partial x_1})^2 dx_1 \right)$$

$$\int_0^1 v(0,x_2)^2 dx_2 \leq 2 \left(\int_0^1 \int_0^1 v(x_1,x_2)^2 dx_1 dx_2 + \int_0^1 \int_0^1 (\frac{\partial v(x_1,x_2)}{\partial x_1})^2 dx_1 dx_2 \right) \leq 2 \left(||v||_{L^2(\Omega)}^2 + ||\nabla v||_{L^2(\Omega)}^2 \right)$$
 This implies that $||v||_{L^2(\Gamma)} \leq 2||v||_1^2$

Definition: We saw that the trace operator $\gamma: H^1(\Omega) \to L^2(\Gamma)$ is bounded and therfore it's nullspace (kernel) is a closed subspace of H^1_{Ω} . We define H^1_0 :

$$H_0^1(\Omega) = \{ v \in H^1(\Omega)_{\gamma} v = 0 \}$$

It is a closed subspace of H^1 these are all the functions in H^1 that vanish on the boundary Γ in the trace sense.

Homework: $T:V\to W$, where V and W are normed spaces, is bounded. Show that $\ker(T)=\{v\in V:Tv=0\}$ is a closed subspace of V.

Homework solution:

6 Lecture 2017.11.13

Theorem:(Poincaré inequality) Let $\Omega \subset \mathbb{R}^d$ be a bounded domain. Then there is a constant c such that $||v||_{L^2} \le c||\nabla v||_{L^2}$ for all $v \in H_0^1$. It is important that $v \in H_0^1$ (zero on boundary).

Proof: Fact: C_0^1 is dense in H_0^1 therefore it is enough to prove that $||v||_{L^2} \le c||\nabla v||_{L^2}$ $\forall v \in C_0^1(\Omega)$. Indeed: $v \in H_0^1, \exists (v_n) \in C_0^1: v_n \to v \text{ in } H^1\text{-norm } v_n \to v \text{ in } L^2, \nabla v_n \to \nabla v \text{ in } L^2 \Rightarrow C_0^1(\Omega)$

$$||v_n||_{L^2} \le c||\nabla v_n||_{L^2} \longrightarrow ||v||_{L^2} \le ||\nabla v||_{L^2} \text{ as } n \to \infty$$

as $||\cdot||_{L^2}$ is continuous. We will prove this for $\Omega = (0,1) \times (0,1)$. Let $v \in C_0^1(\Omega)$ $x \in (x_1,x_2) \in \Omega$. Then:

$$v(x_1, x_2) - v(0, x_2) = \int_0^{x_1} \frac{\partial v}{\partial x_1}(s, x_2) ds$$

This is simply the fundamental theorem of calculus. The second term on the righthand side is 0 because of compact support. We now use Cauchy-Schwarz, our second facor is the invisible 1 in front of our derivative of v:

$$v(x_1,x_2)^2 \leq \int_0^{x_1} 1^2 ds \cdot \int_0^{x_1} \left(\frac{\partial v}{\partial x_1}(s,x_2) \right)^2 ds \leq \int_0^1 \left(\frac{\partial v}{\partial x_1}(s,x_2) \right)^2 ds.$$

Here the last inequality follows from $x_1 \leq 1$, since we have a squared real valued function the integral can only get bigger if we extend our integration limits. We now integrate the above inequality over all of Ω :

$$\int_0^1 \int_0^1 v(x_1, x_2)^2 dx_1 dx_2 \le \int_0^1 \int_0^1 \left(\frac{\partial v}{\partial x_1}(s, x_2) \right)^2 ds dx_2.$$

The integral over x_1 on the righthand side evaluates to 1 since the righthand side doesn't depend on x_1 . The righthand side definitely is smaller than the norm of the gradient squared, if we add more derivative terms we will end up with something larger. Thus we have:

$$\int_{0}^{1} \int_{0}^{1} v(x_{1}, x_{2})^{2} dx_{1} dx_{2} \leq \int_{0}^{1} \int_{0}^{1} \left(\frac{\partial v}{\partial x_{1}}(s, x_{2}) \right)^{2} ds dx_{2} \leq ||\nabla v||_{L^{2}}^{2},$$

which we wanted to show.

Corollary: If $v \in H_0^1$ then:

$$|v|_1^2 = ||\nabla v||_{L^2}^2 \le ||v||_{L^2}^2 + ||\nabla v||_{L^2}^2 (=||v||_1^2) \le c||\nabla v||_{L^2}^2 + ||\nabla v||_{L^2}^2 = (c+1)||\nabla v||_{L^2}^2 =$$

Therefore on $H_0^1 |\cdot|_1$ and $|\cdot|_1$ are equivalent and thus $|\cdot|_1$ is a norm on H_0^1 not just a seminorm.

Definition: The dual space $(H_0^1)^*$ is denoted bu H^{-1} . That is H^{-1} is the space of bounded linear functionals on H_0^1 . If we equip H_0^1 with $|\cdot|_1$ then the norm on H^{-1} is given by

$$||L||_{H^{-1}} = \sup_{v \in H_0^1} \frac{|L(v)|}{|v|_1}.$$

Boundary value problems: We will consider a general second order elliptic problem of the form (which we will refer to as BVP):

$$\mathcal{L}u = -\nabla \cdot (a\nabla u) + b \cdot \nabla u + cu = f$$

where $f \in \Omega \subset \mathbb{R}^d$ and u = 0 on Γ . a, b and c are smooth functions (b vectorfield) and f is continuous.

Definition: A function u is a classical solution of the boundary value problem if $u \in C^2\overline{\Omega}$ and u satisfies BVP.

Note: In applications one would like to consider more general f, say $f \in L^2$. We need a more general solution concept, weak or variational formulation of BVP.

Suppose that $u \in C^2(\overline{\Omega})$ is a classical solution. We take $v \in C_0^1(\Omega)$ multiply both sides of the equation BVP by v and integrate over Ω (note: integration by parts):

$$\int_{\Omega} fv dx = \int_{\Omega} \mathcal{L}uv dx = \int_{\Omega} -\nabla \cdot (a\nabla u)v + b \cdot \nabla uv + cuv dx = -\int_{\Gamma} a\nabla u \cdot nv ds + \int_{\Omega} a\nabla u \cdot \nabla v + b \cdot \nabla uv + cuv dx.$$

The integral over Γ is 0 since $v \in C_0^1$. Thus we have we have:

$$\int_{\Omega} a\nabla u \cdot \nabla v + b \cdot \nabla uv + cuv dx = \int_{\Omega} fv dx \ \forall v \in C_0^1(\Omega)$$

Claim: This holds for all $v \in H_0^1(\Omega)$. $v \in H_0^1$, $(v_n) \in C_0^1$ such that $v_n \to v$ in L^2 and $\nabla v_n \to \nabla v$ in L^2 . Thus our equation can be extended to H_0^1 by taking the limit $n \to \infty$, we also note that our integral is a sum of inner products in L^2 :

$$(a\nabla u, v_n) + (b \cdot \nabla u, v_n) + (cu, v_n) = (f, v_n) \longrightarrow (a\nabla u, v) + (b \cdot \nabla u, v) + (cu, v) = (f, v).$$

Definition: (Weak/Variational solution of BVP) Find $u \in H_0^1$ such that

$$\int_{\Omega} a\nabla u \cdot \nabla v + b \cdot \nabla uv + cuv dx = \int_{\Omega} fv dx, \ \forall v \in H_0^1.$$

Terminology: Such a function u is called a weak or variational solution of BVP. Note: The above calculation shows that a classical solution is weak solution. Conversely: If u is a weak solution and $u \in C^2(\overline{\Omega})$ then u is a classical solution. Reversing the above calculation we find that

$$\int_{\Omega} f v dx = \int_{\Omega} \mathcal{L} u v dx \ \forall v \in C_0^1$$

or

$$\int_{\Omega} (\mathcal{L}u - f)v dx = 0 \ \forall v \in C_0^1$$

 $(\mathcal{L}u-f,v)=0 \ \forall v\in C_0^1$. As C_0^1 is dense in L^2 we conclude that $\mathcal{L}u-f=0$ in L^2 that is $\mathcal{L}u-f=0$ a.e. If $u\in C^2(\overline{\Omega})$ and $f\in C(\Omega)\Rightarrow \mathcal{L}u-f\in C(\Omega)\Rightarrow \mathcal{L}u(x)-f(x)=0$ for all $x\in\Omega$. (If g is continuous on Ω and g=0 a.e then $g=0 \ \forall x\in\Omega$) Finally as $u\in H_0^1\cap C^2(\overline{\Omega})$, we have $(\gamma u)(x)=u(x), \ x\in\Gamma\Rightarrow u=0$ on Γ thus u is a classical solution.

Note: A weak solution is often not regular enough to be a classical solution (e.g $f \in L^2$, Ω has corners etc.).

Theorem: Suppose that a, b and c are smooth functions in $\overline{\Omega}$ and that $a(x) \geq a_0 > 0$ and that $c(x) - \frac{1}{2}\nabla \cdot b \geq 0$ for all $x \in \Omega$ and $f \in L^2$. Then there is a unique weak solution u of BVP. That is, there is a unique $u \in H_0^1$ such that

$$\int_{\Omega} a \nabla u \cdot \nabla v + b \cdot \nabla u v + c u v dx = \int_{\Omega} f v dx \ \forall v \in H_0^1.$$

Furthermore there is a constant c > 0 independent of f sich that $|u|_1 \le c||f||_{L^2}$.

Proof: We will use the Lax-Milgram Lemma on $V = H_0^1$ with norm $|\cdot|_1$, bilinear form

$$a(w,v) = \int_{\Omega} a\nabla w \cdot \nabla v + b \cdot \nabla wv + cwvdx \ v, w \in H_0^1 = V$$

and linear functional $L(v) = \int_{\Omega} fv dx$. We need to check that a is bilinear bounded and coercive, we also need to check that $L: V \to \mathbb{R}$ is bounded.

To begin with we will need some inequalities they are

$$\begin{split} ||f \cdot g||_{L^{2}} &\leq ||f||_{L^{\infty}} \cdot ||g||_{L^{2}} \\ &\text{If } F = (f_{1}, ..., f_{d}) \ G = (g_{1}, ..., g_{d}) |\int_{\Omega} F \cdot G dx| \leq ||F||_{L^{2}} \cdot ||G||_{L^{2}} \ \text{where } ||F||_{L^{2}} = \int_{\Omega} \sum_{j=1}^{d} f_{j}^{2} dx \\ ||F \cdot G||_{L^{2}} &\leq \max_{1 \leq i \leq d} ||f_{i}||_{L^{\infty}} ||G||_{L^{2}} \\ ||fF||_{L^{2}} &\leq ||f||_{L^{\infty}} ||F||_{L^{2}}. \end{split}$$

The proof continues in the next lecture.

Proof: We will use Lax-Milgram Lemma: If V is a Hilbert space, $a:V\times V\to \mathbb{R}$ is a bounded coercive bilinear form on V and $L:V\to \mathbb{R}$ is a bounded linear functional on V then there is a unique $u\in V$ such that $a(u,v)=L(v)\ \forall v\in V$ and $||u||_V\leq c||L||_{V^*}=\sup_{v\in V}\frac{|L(v)|}{||v||_V}$.

Let $V = H_0^1$ with norm $|\cdot|_1$, define

$$a(w,v) = \int_{\Omega} a\nabla w \cdot \nabla v + b \cdot \nabla wv + cwvdx \ v, w \in H_0^1 = V$$

and define

$$L(v) = \int_{\Omega} fv dx \ v \in H_0^1 = V.$$

As stated we need to show: a is (1) bilinear, (2) bounded and (3) coercive, we also have to check if (4) L is bounded. It is easy to see that a is bilinear, that takes care of criterion (1). We now show that a is bounded, that is $|a(w,v)| \le K|w|_1|v|_1$:

$$\begin{split} |a(w,v)| & \leq \left| \int_{\Omega} a \nabla w \cdot \nabla v dx \right| + \left| \int_{\Omega} b \cdot \nabla w v dx \right| + \left| \int_{\Omega} c w v dx \right| \overset{\text{C.S}}{\leq} \\ & ||a \nabla w||_{L^{2}} ||\nabla v||_{L^{2}} + ||b \cdot \nabla w||_{L^{2}} ||v||_{L^{2}} + ||cw||_{L^{2}} ||v||_{L^{2}} \leq \\ & ||a||_{L^{\infty}} ||\nabla w||_{L^{2}} ||\nabla v||_{L^{2}} + \left(\max_{1 \leq i \leq d} ||b_{i}||_{L^{\infty}} \right) ||\nabla w||_{L^{2}} ||v||_{L^{2}} + ||c||_{L^{\infty}} ||w||_{L^{2}} ||v||_{L^{2}} \overset{\text{Poincar\'e}}{\leq} \\ & ||a||_{L^{\infty}} |v|_{1} |w|_{1} + M \left(\max_{1 \leq i \leq d} ||b_{i}||_{L^{\infty}} \right) |w|_{1} |v|_{1} + M^{2} ||c||_{L^{\infty}} |v|_{1} |w|_{1} \leq K |w|_{1} |v|_{1} \end{split}$$

(note that we have used the definition of the seminorm here) where

$$K = 3 \max \left\{ ||a||_{L^{\infty}}, +M \left(\max_{1 \leq i \leq d} ||b_i||_{L^{\infty}} \right), M^2 ||c||_{L^{\infty}} \right\}.$$

We have now shown the boundedness of a. We now show coercivity that is $|a(v,v)| \ge \alpha ||v||_V^2$.

$$a(v,v) = \int_{\Omega} a|\nabla v|^2 + b \cdot \nabla v + cv^2 dx = \int_{\Omega} a|\nabla v|^2 + \frac{1}{2}b \cdot \nabla(v^2) + cv^2 dx$$

Note: $\nabla \cdot (bv^2) = v^2 \nabla \cdot b + b \cdot \nabla (v^2)$. Also since v is zero on Γ since $v \in H_0^1$ the divergence theorem gives us that

$$\int_{\Omega} \nabla \cdot (bv^2) dx = \int_{\gamma} b \cdot nv^2 ds = 0 \Rightarrow \int_{\Omega} b \cdot \nabla (v^2) dx = -\int_{\Omega} v^2 \nabla \cdot b dx.$$

Thus we have that

$$\begin{split} a(v,v) &= \int_{\Omega} a|\nabla v|^2 - \frac{1}{2}v^2\nabla \cdot b + cv^2 dx = \int_{\Omega} a|\nabla v|^2 + (c - \frac{1}{2}v^2\nabla \cdot b)v^2 dx \\ &\geq \int_{\Omega} a|\nabla v|^2 dx \geq a_0 \int_{\Omega} |\nabla v|^2 dx = a_0|v|_1^2, \end{split}$$

(here we used that $c-\frac{1}{2}\nabla\cdot b\geq 0$) this means a is coercive. Finally, we need to show that L is bounded, that is show $\exists C>0: |L(v)|\leq C||v||_V$). We have

$$\begin{split} |L(v)| &= |(v,f)| \overset{\text{C.S}}{\leq} ||v||||f|| \overset{\text{Poincar\'e}}{\leq} C||f|||v|_1 \Rightarrow \frac{|L(v)|}{|v|_1} \leq C||f|| \\ &\Rightarrow ||L||_{V^*} = \sup_{v \in V} \frac{|L(v)|}{|v|_1} \leq C||f||. \end{split}$$

Which shows that L is bounded. Now by the Lax-Milgram lemma there is a unique $w \in V = H_0^1$ such that $a(w,v) = L(v) \forall v \in V = H_0^1$ and $|w|_1 = ||w||_V \le C||L||_{V^*} \le K||f||$.

When b=0 the bilinear form a is symmetric, then the unique weak solution can be characterized as the minimizer of the energy functional $F(v) = \frac{1}{2}a(v,v) - L(v)$.

Theorem: (Dirichlet's principle) Suppose that b=0, a, c are smooth in $\overline{\Omega}$ and $a(x)>a_0>0$ $c(x)>\geq 0$ $x\in\Omega$ then the unique solution of BVP satisfies $F(u)\leq F(v)$ $\forall v\in H^1_0$ where

$$F(v) = \frac{1}{2} \int_{\Omega} a|\nabla v|^2 cv^2 dx - \int_{\Omega} fv dx$$

with equality only if v = u.

Proof: Theorem A.2 (in the book) shows that $F(u) \leq F(v) \ \forall v \in V = H_0^1$ as u is a weak solution. If $w \in H_0^1$ such that $F(w) \leq F(v)$ for all $v \in H_0^1$ then by theorem A.2, w is a weak solution. By uniqueness u = w.

Inhomogeneous BVP: Classical formulation: $u \in C^2$ such that $\mathcal{L}u = f$ in Ω , u = g on Γ where f and g are given continuous functions.

We would like to consider this problem when $f \in L^2(\Omega)$, $g \in L^2(\Gamma)$. Weak formulation: Find $u \in H^1$ such that a(u,v) = L(v) for all $v \in H^1_0$ $\gamma u = g$ where $\gamma^1_H \to L^2(\Gamma)$ is the trace operator

$$a(u,v) = \int_{\Omega} a\nabla u \cdot \nabla v + b \cdot \nabla uv + cuv dx,$$

$$L(v) = \int_{\Omega} fv dx.$$

Call this problem BVP1.

Theorem: Suppose that there is an $u_0 \in H^1$ such that $\gamma u_0 = g$. If a, b, c are smooth, $a(x) \ge a_0 > 0$, $c(x) - \frac{1}{2}\nabla b(x) \ge 0$ for all $x \in \Omega$, $f \in L^2(\Omega)$, $g \in L^2(\Gamma)$ then there is a unique weak solution of BVP1.

Proof: We look at the problem: find $w \in H_0^1$ such that a(w,v) = L(v) - a(w,v) for all $v \in H_0^1$. As $a: H_0^1 \times H_0^1 \to \mathbb{R}$ is bounded and coercive (like before), L is bounded, and $V \to a(u_0,v)$ is also bounded on H_0^1 . We have that

$$|a(u_0, v)| \le K||u_0||_1||v||_1.$$

By Lax-Milgram there is a unique $w \in H_0^1$ such that $a(w,v) = L(v) - a(u_0,v) \ \forall v \in H_0^1$. Then $u := w + u_0$ is a weak solution of BVP1.

$$a(u, v) = a(w, v) + a(u_0, v) = L(v) - a(u_0, v) + a(u_0, v) = L(v).$$

Also

$$\gamma u = \gamma w + \gamma u_0 = 0 + g = g,$$

hence u is a weak solution of BVP1. Uniqueness: Suppose that w_1 and w_2 are weak solutions of BVP1. Let $u = w_1 - w_2$,

$$a(u,v) = a(w_1,v) - a(w_2,v) = L(v) - L(v) = 0 = (0,v) \ \forall v \in H_0^1.$$

$$\gamma u = \gamma w_1 - \gamma w_2 = q - q = 0,$$

hence $u \in H_0^1$. Furthermore u solves a(u,v) = (0,v) for all $v \in H_0^1$. Buth this has a unique solution which has to be u, which that satisfies $|u|_1 < ||f|| = c||0|| = 0 \Rightarrow u = 0$ in $H^1 \Rightarrow w_1 = w_2$.

Neumann problem: We consider the classical formulation: Find $u \in C^2(\overline{\Omega})$ such that $\mathcal{A}u = -\nabla \cdot (a\nabla u) + cu = f$ in Ω , $\frac{\partial}{\partial n} = 0$ on Γ , where $\frac{\partial}{\partial n} = n \cdot \nabla u$ where n is the unit normal of Γ . Let $u \in C^2(\overline{\Omega})$ be a classical solution and $v \in C^1(\overline{\Omega})$ then

$$\begin{split} \int_{\Omega} v f dx &= \int_{\Omega} \mathcal{A} u v dx = \int_{\Omega} -\nabla \cdot (a \nabla u) + c u dx = -\int_{\Gamma} a \nabla u \cdot n v ds + \int_{\Omega} a \nabla u \cdot \nabla v + c u v dx = \\ &\int_{\Omega} a \nabla u \cdot v + c u v dx \ \forall v \in C^{1}(\overline{\Omega}). \end{split}$$

Here we used that the normal derivative is 0. By limit argument using that $C^1(\overline{\Omega})$ is dense in $H^1(\Omega)$ we set

$$\int_{\Omega}a\nabla u\cdot\nabla v+cuvdx=\int_{\Omega}fvdx\ \forall v\in H^{1}.$$

Neumann problem continued (Weak formulation): Find $u \in H^1(\Omega)$ such that

$$\int_{\Omega} a\nabla u \cdot \nabla v + cuv dx = \int_{\Omega} dx \ \forall v \in H^{1}(\Omega),$$

if u is a weak solution and $u \in C^1$ then u is a classical solution. Indeed: reversing the steps before we get

$$\int_{\Omega} fv dx = \int_{\Omega} -\nabla \cdot (a \nabla u) v + cuv dx + \int_{\Gamma} a \frac{\partial u}{\partial n} v ds \ \forall v \in H^1.$$

Let first $v \in C_0^1 \subset H^1 \Rightarrow$

$$\int_{\Omega} fv dx = -\int_{\Omega} -\nabla \cdot (a\nabla u) + cuv dx \ \forall v \in C_0^1 \Rightarrow$$

$$\int_{\Omega} (\mathcal{L}u - f)v dx = 0 \ \forall v \in C_0^1.$$

Since C_0^1 is dense in L^2 , we get $\mathcal{L}u = f$ a.e. If $u \in C^2(\overline{\Omega}), f \in C(\overline{\Omega}) \Rightarrow \mathcal{L}u(x) = f(x)$ in $\Omega \Rightarrow$

$$\int_{\Gamma} a \frac{\partial u}{\partial n} v ds = 0 \ \forall v \in H^1 \Rightarrow \frac{\partial u}{\partial n} = 0 \ \text{on} \ \Gamma.$$

Theorem: Let a, b, c be smooth in $\overline{\Omega}$, $a(x) \ge a_0 > 0 \ \forall x \in \Omega$, $c(x) \ge c_0 > 0$ and $f \in L^2$. Then the Neumann boundary value problem has a unique weak solution.

Proof: Let

$$a(w,v) = \int_{\Omega} a\nabla w \nabla v + cwv dx, \ v, w \in H^{1}$$

and let

$$L(v) = \int_{\Omega} fv dx \ v \in H^1.$$

To Show: There is a unique $u \in H^1$: $a(u,v) = L(v) \forall v \in H^1$. To show: a is bounded and coercive (a is clearly symmetric and bilinear!).

Bounded:

$$|a(w,v)| \leq \left| \int_{\Omega} a \nabla w \cdot \nabla v dx \right| + \left| \int_{\Omega} cwv dx \right| \stackrel{\text{C.S.}}{\leq} ||a \nabla w||_{L^{2}} ||\nabla v||_{L^{2}} + ||cu||_{L^{2}} ||v||_{L^{2}} \leq ||a(w,v)|| \leq ||a(w,$$

$$||a||_{L^{\infty}}||\nabla w||||\nabla v|| + ||c||_{L^{\infty}}||w||||v|| \le$$

$$||a||_{L^{\infty}}(||w|| + ||\nabla w||)(||c|| + ||\nabla v||) + ||c||_{L^{\infty}}(||w|| + ||\nabla w||)(||v|| + ||\nabla v||) = k||w||_{1}||v||_{1},$$

and where $k = ||a||_{L^{\infty}} + ||c||_{L^{\infty}}$.

Coercive:

By the Riesz representation theorem (or more generally by Lax-Milgram) $\exists! u \in H^1: a(u,v) = L(v) \forall v \in H^1$