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TMA690 Partialla Differentialekvationer Lecture notes

1 Lecture 2017.10.30

Notation: A multi index α is a vector in Rd whose components αj are non-negative integers.
The length |α| of α is defined by

|α| =
d∑
j=1

αj .

If v : Rd → R we may use the multi index notation to define partial derivatives of order |α|:

Dα =
∂|α|

∂xα1
1 ...∂xαk

k

.

Example: α = (1, 0, 1), |α| = 2

Dαv =
∂2v

∂x1∂x3
.

Notation: For ξ ∈ Rd we define ξα = ξα1
1 · ... · ξ

αd

d .

Example: α = (1, 0, 1), ξ = (ξ1, ξ2, ξ3)⇒ ξα = ξ1 · ξ3.

In this course we will mainly consider linear partial differential equations of the form

αu = α(x,D)u =
∑
|α|≤m

aα(x)Dαu = f, in Ω

Ω is an open connected set.

Definition: We say that the direction ξ ∈ Rd, ξ 6= 0, is a characteristic direction for the operator
α(x,D) at x if

Λ(ξ) = Λ(ξ, x) =
∑
|α|=m

aα(x)ξα = 0.

Note: in the sum we only take |α| = m (principle part).

Definition: A (d− 1)-dimensional surface is given locally as a function
F : Rd → R F (x1, ..., xd) = 0. The normal is given as ∇F = ( ∂F∂x1

, ..., ∂F∂xn
) for x ∈ Rd on surface.

Main Examples:

Example: First order scalar equations:

d∑
j=1

aj(x)
∂u

∂xj
+ a0(x)u = f,

∑
|α|≤0

aα(x)Dαu = f


Characteristic equation:

d∑
j=1

aj(x) · ξj = 0

∑
|α|=1

aα(x)ξα = 0


Then ξ is a characteristic direction if ξ is perpendicular to (a1(x), ..., ad(x)).

Example: Let

∆u =

d∑
j=1

∂2u

∂x2
j

1.
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Poisson’s equation: −∆u = f . Characteristic equation Λ(ξ) = −(ξ2
1 + ...+ ξ2

d) = 0⇒ ξ = 0. This
means that there are no characteristic directions.

Example: Heat equation ∂u
∂t −∆u = f . We consider in Rd+1 with variables (x, t) x ∈ Rd and

t ∈ R. With variables (ξ, τ) the characteristic equatopm Λ(ξ, τ) = −(ξ2
1 + ...+ ξ2

d) = −|ξ|2 = 0.
For example the vector (0,0,0,...,0,1) is a characteristic direction and the plane τ = 0 is a
characteristic surface. F (x1, ..., xd, t) = t = 0 ∇F = (0, ..., 0, 1)

Example: Wave equation: ∂2u
∂t2 −∆u = f . Consider in Rd+1 with points (x, t), x ∈ Rd, t ∈ R.

Characteristic equation with variables (ξ, τ), ξ ∈ Rd, τ ∈ R. Λ(ξ, τ) = −(ξ2
1 + ...+ ξ2

d) + τ2 = 0,
τ = ±|ξ|. Characteristic directions (ξ,±|ξ|), ξ 6= 0 anything.

Characteristic surface: Given x ∈ Rd and t ∈ R consider the cone |x− x|2 − |t− t|2 = 0.
∇F = (2(x1 − x1), ..., 2(xd − xd),−2(t− t)) = 2(x− x, t− t) =

t−t=±|x−x|
2(x− x,∓|x− x|). This is

of the form (ξ,±|ξ|)⇒ this cone is a characteristic surface.

(x, t)

x1

x2

t

Classification of 2:nd order PDE’s:

Consider second order PDE with constant coefficients:

d∑
j,k=1

ajk
∂2u

∂xj∂xk
+

d∑
j=1

bj
∂u

∂xj
+ cu = f

where ajk = akj , ajk, bj , c constants. Characteristic equation

Λ(ξ) =

d∑
j,k

ajkξjξk = ξ ·Aξ A =

a11 . . . a1d

...
. . .

...
ad1 . . . add


A is symmetric, we can use the Spectral Theorem

A = PDP−1, P−1 = PT D =

λ1 0
. . .

0 λd


We introduce a change of variables Pη = ξ
Λ(ξ) = Λ(Pη) = Pη ·APη = Pη · PDP−1Pη = Pη · PDη = PTPη ·Dη = ηDη =

∑d
j=1 λjη

2
j .

Definition: A differential equation is elliptic if all λj has the same sign. It is hyperbolic if all
but one λj has the same sign and it parabolic if the remaining λj = 0.

Let V be a vector space over R.

2.
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Definition: An inner product on V is a function V × V → R such that

(1) (λu+ µv,w) = λ(u,w) + µ(v, w) u,w ∈ V λ, µ ∈ R
(2) (u, v) = (v, u) u, v ∈ V
(3) (v, v) > 0 for all v ∈ V, v 6= 0

The pair (V, (·, ·)) is called an inner product space.

Homework: Show that the following is true:

(a) (v, v) = 0⇔ v = 0

(b) (w, λu+ µv) = λ(w, u) + µ(w, v)

Homework solution: This is shown by using our three axioms.

(a): We begin by showing ⇒: Let v = λu where u 6= 0. Then it follows from axiom (1) that
(v, v) = (λu, λu) = λ(u, λu). Then we use axiom (2) λ(u, λu) = λ(λu, u) = λ2(u, u). Since
(v, v) = 0 it follows that λ2(u, u) = 0 but we defined that u 6= 0 thus it follows from axiom (3)
that (u, u) > 0 which means that λ2 = 0, which implies that v = 0.

Now we show ⇐: As before let v = λu where u 6= 0. By the same reasoning as before we have
that (v, v) = λ2(u, u), and that (u, u) > 0. But since v = 0 and u 6= 0, λ has to be 0, which in
turn means that (v, v) = 0.

(b): Axiom (2) gives us that (w, λu+ µv) = (λu+ µv,w), axiom (1) then gives us that
(λu+ µv,w) = λ(u,w) + µ(v, w). Finally we use axiom (2) again and we recieve
λ(u,w) + µ(v, w) = λ(w, u) + µ(w, v). �

Example: Let C[a, b] denote the set of real-valued continous functions on [a, b] with addition
(f + g)(x) = f(x) + g(x) and scalar multiplication (λf)(x) = λf(x). Define

(f, g) =
∫ b
a
f(x)g(x)dx.

Homework: Show that (C[a, b], (·, ·)) is an inner product space.

Homework solution: We have to show that the three axioms hold for all the elements in C[a, b]
with the given inner product.

(1): Consider (λf + µg, h), where f, g, h are arbitrary elements in C[a, b] and λ, µ are arbitrary

real constants. Our inner product gives us
∫ b
a

(λf(x) + µg(x))h(x)dx, we use the linearity of the

integral
∫ b
a

(λf(x) + µg(x))h(x)dx = λ
∫ b
a
f(x)h(x)dx+ µ

∫ b
a
g(x)h(x)dx. Thus axiom (1) holds.

(2): Consider f, g defined as before. According to our inner product

(f, g) =
∫ b
a
f(x)g(x)dx =

∫ b
a
g(x)f(x)dx = (g, f). This means that axiom (2) holds.

(3): Consider f ∈ C[a, b] such that f isn’t the zero function on our interval. We have that

(f, f) =
∫ b
a
f(x)2dx. f(x)2 ≥ 0 for all x and since it isn’t the zero function f(x) has to non-zero

somewhere, thus f(x)2 > 0 somewhere. Since we consider f ∈ C[a, b] f(x)2 has to be non-zero on
atleast some interval in [a, b] and 0 at least zero everywhere else, thus by the definition of the

integral
∫ b
a
f(x)2dx > 0⇒ (f, f) > 0. Axiom (3) holds. �
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2 Lecture 2017.10.31

Definition: A linear functional is a function f : V → R that is linear
f(λu+ µv) = λf(u) + µf(v), λ, µ ∈ R u, v ∈ V .

Definition: A bilinear form a : V × V → R is a function such that
a(λu+ µv,w) = λa(u,w) + µa(v, w) and a(w, λu+ µv) = λa(w, u) + µa(w, v), u, v, w ∈ V
λ, µ ∈ R. It is symmetric if a(u, v) = a(v, u) and it is positive definite if a(v, v) > 0 for all v ∈ V
such that v 6= 0.

Homework: Let V = (C[a, b], (·, ·)) be an inner product space with the inner product

(f, g) =
∫ b
a
fgdx). Show the following:

(a): F (v) =
∫ b
a
v(x)dx is a linear functional.

(b): F (v) = v(a) is a linear functional.

(c): a(f, g) =
∫ b
a
f(x)g(x)(1 + x2)dx is a positive definite bilinear form.

Homework solution: We use the definitions:

(a): Let v, u be elements from C[a, b] and λ, µ elements from R. Now consider

F (λv + µu) =
∫ b
a
λu(x) + µv(x)dx = λ

∫ b
a
v(x)dx+ µ

∫ b
a
u(x)dx. The integrals evaluate to real

numbers. This mapping fulfills the condition defined above, it is linear in its argument and it
maps functions to real numbers.

(b): Let u, v and λ, µ be defined as above. Now consider
F (λv + µu) = (λv + µu)(a) = λv(a) + µu(a). This mapping fulfills the condition defined above, it
is linear in its argument and it maps functions to real numbers.

(c): Let f, g, h ∈ C[a, b] and let λ, µ ∈ R. We begin by showing it’s a bilinear form.

a(λf + µg, h) =
∫ b
a

(λf(x) + µg(x))h(x)(1 + x2)dx =

λ
∫ b
a
f(x)h(x)(1 + x2)dx+ µ

∫ b
a
g(x)h(x)(1 + x2)dx = λa(f, h) + µa(g, h). We can see that if it is

linear in its first argument a has to be linear in its second argument, following from elementary
properties of the integral. To show that it is positive definite we consider

a(f, f) =
∫ b
a
f(x)2(1 + x2)dx and let f not be the zero function. With f ∈ C[a, b] we have that it

has to be non-zero on atleast some interval in [a, b], thus f(x)2 is greater than zero on atleast
some interval in [a, b] and atleast zero everywhere else. Also, (1 + x2) > 0 on [a, b]. Thus the
integral has to be > 0, which means that a is positive definite. �

Definition: We say that u ∈ V and v ∈ V are orthogonal if (u, v) = 0. Notation: u ⊥ v.

Definition: Let V be a vector space over R then a function || · || : V → R+ is a norm on V if:

(a) ||v|| > 0 ∀v 6= 0

(b) ||λv|| = |λ|||v|| ∀v ∈ V, λ ∈ R
(c) ||u+ v|| ≤ ||u||+ ||v|| u, v ∈ V

Note: v = 0⇔ ||v|| = 0. The pair (v, || · ||) is called a normed space.

Homework:Let V = C[a, b] be a vector space with the norm ||f || = sup
x∈[a,b]

|f | = max
x∈[a,b]

|f |. Show

that this is a normed space.

Homework solution: We have to show that the given norm fullfills the axioms given any
element from V .

(a): |f | ≥ 0, and since according to the axiom f can’t be the zero function it has to be > 0

4.
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atleast on some interval. If we take the maximum value on that interval we will recieve a real
number > 0.

(b): This follows directly from the properties of the supremum/maximum.
sup
x∈[a,b]

|λf | = λ sup
x∈[a,b]

|f |.

(c): Let f, g ∈ C[a, b] Consider sup
x∈[a,b]

|f + g| according to the triangle inequality for absolute

values we have that sup
x∈[a,b]

|f + g| ≤ sup
x∈[a,b]

(|f |+ |g|) ≤ sup
x∈[a,b]

|f |+ sup
x∈[a,b]

|g|. Thus

||f + g|| ≤ ||f ||+ ||g||. �

If (V, (·, ·)) is an inner product space then ||v|| = (v, v)1/2 is a norm.

Proposition: Cauchy-Schwartz inequality : Let (V, (·, ·)) be an inner product space. Then
|(u, v)| ≤ ||u||||v||, u, v ∈ V with equality if and only if u = λv for some λ ∈ R.

Proof: If v = 0 the result holds trivially. Let t ∈ R and consider
0 ≤ (u+ tv, u+ tv) = ||u||2 + 2t(u, v) + t2||v||2 := f(t). This is a quadratic function, since it’s
greater than 0 for all t it also has to be greater than 0 in its minimum. It can easily be shown

that the minimum is a = − (u,v)
||v||2 .

0 ≤ f(a) = ||u||2−2
(u, v)2

||v||2
+

(u, v)2||v||2

||v||4
= ||u||2− (u, v)2

||v||2
⇒ (u, v)2 ≤ ||u||2||v||2 ⇒ |(u, v)| ≤ ||u||||v||

If u = −tv we have equality. �

Proposition Triangle inequality : ||u+ v|| ≤ ||u||+ ||v||.

Proof: We prove this by using Cauchy-Schwartz inequality

||u+ v||2 = (u+ v, u+ v) = ||u||2 + 2(u, v) + ||v||2 ≤ ||u||2 + 2||u||||v||+ ||v||2

= (||u||+ ||v||)2 ⇒ ||u+ v|| ≤ ||u||+ ||v||

�

Homework: Prove the Parallellogram identity : ||u+ v||2 + ||u− v||2 = 2(||u||2 + ||v||2)

Homework solution: We simply use the axioms and the definition of the norm!

||u+v||2 + ||u−v||2 = (u+v, u+v)+(u−v, u−v) = (u, u+v)+(v, u+v)+(u, u−v)− (v, u−v) =

(u, u) + (u, v) + (v, u) + (v, v) + (u, u)− (u, v)− (v, u) + (v, v) = 2(||u||2 + ||v||2) �

Definition: Let (xn) ⊂ V be a sequence in (V, || · ||), we say xn → x ∈ V as n→∞ alternatively
written as lim

n→∞
xn = x if lim

n→∞
||xn − x|| = 0, with ε− δ-notaion:

(∀ε > 0)(∃N) : n ≥ N ⇒ ||xn − x|| < ε.

Definition: A sequence is a Cauchy-sequence if (∀ε > 0)(∃N) : m,n ≥ N ⇒ ||xn − xm|| < ε. It
can be stated informally as: lim

m,n→∞
||xn − xm|| = 0.

Fact: If (xn) is convergent then xn is a Cauchy-sequence. A The converse is not true! A

A normed space is called complete if every Cauchy-sequence converges. A complete normed space
is called a Banach space and a complete inner product space is called a Hilbert space.

Example: C[a, b], ||f || = sup
x∈[a,b]

|f | is a Banach space.

5.
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Homework: Show that C[a, b], ||f || = |
∫ b
a
f(x)2|1/2 is not complete.

Homework solution:

Find a function that is Cauchy but that doesn’t converge to a continous function. Try a function
which converges to a step function.

Example:

V = {(xn)}, xn ∈ R,
∞∑
n=1

|xn|2 <∞, ((xn), (yn)) =

∞∑
n=1

xn · yn

(V, (·, ·)) is complete.

Definition: Let V,W be normed spaces. A mapping B : V →W is linear if
B(λu+ µv) = λBu+ µBv u, v ∈ V λ, µ ∈ R. It is bounded if there is c > 0 such that
||Bv||W ≤ c||v||V for all v ∈ V . We nay then define the norm of B by

||B|| = sup
v∈V, v 6=0

||Bv||W
||v||V

= sup
||v||V =1

||Bv||W = inf{c ∈ R : ||Bv||W ≤ c||v||V for all v ∈ V }

⇒ ||Bv||W ≤ ||B|| · ||v||V

Homework: Show the equalities above.

Homework solution:

Definition: We denote the set of bounded linear operators by B(V,W ) if V = W , B(V ). This
can be made to be a vector space:

(B1 +B2)v = B1v +B2v v ∈ V

(λB)v = λBv λ ∈ R, v ∈ V

Then B(V,W ) is a normed space and if W is complete so is B(V,W ).

Homework: Show that ||B|| defined as above is a norm.

Homework solution:

Lemma: B ∈ B(V,W )⇔ B is continous that is xn → x⇒ Bxn → Bx.

Definition: Let V be a normed space. The space of continous linear functionals is B(V,R).
Notation: V ∗ = B(V,R), V ∗ is called the dual space of V . Since R is complete so is V ∗.

A bilinear form a : V × V → R is bounded if there is c > 0 sicj that |a(u, v)| ≤ c||u|| · ||v||.

Definition: The ball centerad at v0 ∈ V with radius r > 0 is Br(r0) = {v ∈ V ||v − v0|| < r}.

Definition: A set A ⊂ V is open if for every v0 ∈ A there is r = r(v0) such that Br(v0) ⊂ A.

Definition: A is closed if Ac = V \A is open.

Homework: Show that A is closed ⇔ (xn) ∈ A, xn → x ∈ V ⇒ x ∈ A.

Homework solution:

Definition: A ∈ V is a dense subset of V of for all v ∈ V there is vn ∈ A vn → v.

Theorem: Let V be a Hilbert space and V0 ⊂ V be a closed subspace. Then any v ∈ V can be
uniquely be written as v = v0 + w where v0 ∈ V0 and w ⊥ v0. The element v0 can be

6.
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characterised as th unique element in V0 such that ||v − v0|| = min{||v − u||, u ∈ V0}. The
element v0 is denoted by PV0

v.

v

v

V0

w

7.
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3 Lecture 2017.11.06

Corollary: V is a Hilbert space, V0 ⊂ V is a closed subspace, V0 6= V . Then w ∈ V \ V0, w ⊥ v0

Proposition: V0 6= V ⇒ ∃w0 ∈ V \ V0, w0 6= 0. Projection theorem:
w0 = v0 + w, w ⊥ v0 w 6= 0 as w0 6= v0.

Theorem: (Riesz Representation Theorem) Let V be a Hilbert space and L : V → R be a
bounded linear functional on V (ie. L ∈ V ∗). Then there is a unique u ∈ V such that
L(V ) = (v, u) for all v ∈ V . Furthermore ||L||V = ||u||.

Proof: See the book.

Note: The Riesz representation theorem identifies continous linear functionals with elements of
the Hilbert space V .

Homework: Show that the map Φ : L→ u (V ∗ → V ) is linear, surjective and isometric. (V and
V ∗ are isometrically isomorphic).

Homework solution:

Often in this course we will study the following problem: Let V be a Hilbert space and
L : V → R be a bounded and a : V × V → R bilinear positive definite. Problem: Find u ∈ V such
that a(u, v) = L(v) for all v ∈ V . Call this problem (V ).

Definition: A bilinear form u : V × V → R is called coercive of there is an α > 0 sich that
a(v, v) ≥ α||v||2 for all v ∈ V . Note that coercive implies positive definite, but positive definite
does not imply coercive. In finite dimensions however, postitive definite and coercive is
equivalent.

If a : V × V → R is positive definite, symmetric and bilinear, then a is an inner product on V .

If a is coercive and bounded, then the norm (energy norm) ||v||a = a(v, v)1/2 is equivalent to the
original norm || · ||. α||v||2 ≤ a(v, v) ≤M ||v||2.

In summary: If a : V × V → R is bilinear, coercive, symmetric and bounded then: the energy
norm || · ||a and || · || are equivalent and therefore (V, || · ||a) is complete (hence a Hilbert space).
Also L is bounded linear on (V, || · || ⇒) bounded linear on (V, || · ||a).

In this case the Riesz representation theorem on (V, || · ||a) yields that there is an unique
u ∈ V : L(v) = a(v, u) = a(u, v) for all v ∈ V . Thus equation (V ) has a unique solution.

Energy estimate: We may bound the norm of the solution in terms of L:
α||u||2 ≤ a(u, u) = L(u) ≤ ||L||V ∗ ||u||V ⇒ ||u||V ≤ 1

α ||L||V ∗ .

The solution to (V ) may be characterized through a minimization problem:

Theorem: If a : V × V → R is symmetric and positive definite then u is a solution to problem
(V )⇔ F (u) ≤ F (v) for all v ∈ V F (u)) = 1

2a(u, u)− L(u)

Proof: Suppose that u is a solution to (V ). Set w = v − u⇒ v = u+ w. Then

F (v) = F (u+ w) =
1

2
a(u+ w, u+ w)− L(u+ w) =

1

2
a(u, u)− L(u) + a(u,w)− L(w) +

1

2
a(w,w)

The sum of the first two terms are equal to F (u) by definition. The som of the second two terms
are equal to 0 since u is a solution. Thus we have F (v) ≥ F (u) since a(w,w) ≥ 0.

Now suppose F (u) ≤ F (v) for all v ∈ V . Consider g(t) = F (u+ tv) ≥ F (u) = g(0), where t is a

8.
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real parameter. we have

g(t) = F (u+ tv) =
1

2
a(u+ tv, u+ tv)−L(u+ tv) =

1

2
t2a(v, v) + (a(u, v)−L(v))t+

1

2
a(u, u)−L(u)

This is a quadratic in t and it has a minimum at 0 thus
0 = g′(0) = a(u, v)− L(v)⇒ a(u, v) = L(u) �

Note: F is called the energy functional and (V ) the variational equation for F .

There is an extension when a is non-symmetric.

Theorem: (Lax-Milgram) Let V be a Hilbert space and a : V × V → R be a bounded coercive
bilinear form and L : V → R be a bounded linear functional then there is a unique u ∈ V sich
that a(u, v) = L(v) for all v ∈ V . (That is (V ) has a unique solution)

Note: Unlike the symmetric case before there is no characterization of u through the
minimization of an energy functional. But we still have ||u|| ≤ 1

α ||L||V ∗ .

Function spaces: Let Ω ⊂ Rd then Ω denotes the closure of Ω.

Ω =
⋂

Ω⊂A,A is closed

A

An example is that the closure of a ball is the ball with its boundary.

Let Ω be a domain (≡ open, connected). C(Ω) : vector space of continuous functions Ω→ R.

If Ω is abounded domain then C(Ω) is a Banach space with norm
||V ||C(Ω) = sup

x∈Ω

|v(x)| = max
x∈Ω
|v(x)|

Ck(Ω) : space of k-times continually differentiable functions on Ω : then Dαv is continous for all
|α| ≤ k.

Ck(Ω) : {v ∈ Ck(Ω) : Dαv ∈ C(Ω), |α| ≤ k}. This is a Banach space if we set
||v||Ck(Ω) =

∑
|α|≤k ||Dα

v ||C(Ω). In 1D: Ω = (0, 1):

||v||C2(Ω) = sup
x∈[0,1]

|v(x)|+ sup
x∈[0,1]

|v′(x)|+ sup
x∈[0,1]

|v′′(x)|

A function V : Ω→ R has compact support if v = 0 outside of a compact set (compact ⇔
bounded and closed in Rd)

Ck0 (Ω) is the space of functions in Ck(Ω) with compact support.

C∞0 (Ω) : v ∈ Ck0 (Ω) for every k.

9.
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4 Lecture 2017.11.07

Definition: Let Ω ⊂ Rd be a domain. To begin with let, 1 ≤ p <∞. A function v ∈ Lp(Ω) if∫
Ω
|v(x)|pdx <∞. We define ||v||Lp(Ω) =

(∫
Ω
|v(x)|pdx

)1/p
. Here follows a couple of notes

regarding this definition.

Note 1: Here
∫

Ω
f(x)dx denotes the Lebesgue integral. It coincides with the Riemann integral

for bounded Riemann integrable functions (at least on bounded Ω). For such functions the
Lebesgue integral is an extension of the Riemann integral.

Note 2: There are many functions that are not Riemann integrable but are Lebesgue
integegrable.

Example: Ω = (0, 1), consider the Dirichlet-function:

v(x) =

{
1, if x is rational

0, if x is irrational

Note that v is very simple v = χQ∩(0,1). It’s easy to see that v is not Riemann integrable,
however it is Lebesgue integrable and

∫
Ω
v(x)dx = 0.

Note 3: The Lebesgue integral behaves much nicer than the Riemann integral if one wants to
exchange limits and integrals.

Example: Suppose fn(x)→ f(x), f ∈ Ω. Then ||fn(x)| ≤ g(x), g(x) ∈ L1(Ω) ⇒∫
Ω
f(x)dx = limn→∞

∫
Omega

fn(x)dx. This is called Lebesgue’s dominated convergence theorem.

Note 4: We consider two functions v and w equivalent, or we say that they are equal almost
everywhere (a.e) if v(x) 6= w(x) only for x ∈ A where A has Lebesgue measure 0, defined as
follows: Let c = (a1, b1)× ...× (ad, bd) ⊂ Rd be a hypercube in Rd. The Lebesgue measure m(c)

of c is defined by m(c) =
∏d
i=1(bi − ai).

Definition: A set A ⊂ Rd has Lebesgue measure 0 if for every ε > 0 there are countably many
hypercubes cn, n = 1, 2, ... such that A ⊂

⋃∞
n=1 cn and

∑∞
n=1m(cn) < ε. Note that if

A = {a} ⇒ m(A) = 0, if A is countable then m(A) = 0.

Example: Consider R2 then the real line A = {(x, 0), x ∈ R} has Lebesgue measure 0 (a line has
0 ”area”). In general if Ω ⊂ Rd a domain, then the boundary Γ of Ω (Γ = Ω \ Ω) has Lebesgue
measure 0. for example {(x, 0), x ∈ R} = Γ, Ω = {(x, y) : x ∈ R y > 0}.

Note 5: If v = w a.e, then if v is Lebesgue integrable then so is w and
∫

Ω
vdx =

∫
Ω
wdx.

Example: With the Dirichlet-function from before v ≡ 0 a.e because m(Q ∩ (0, 1)) = 0 thus v is
Lebesgue integrable with Lebesgue integral 0.

Note 6: Elements of the space Lp(Ω) are equivalence classes of functions that are equal a.e.
Therefore in general we cannot talk about point values of v ∈ Lp(Ω), that is v(x) for fixed x
(unless there is a continous representation in the equivalence class).

Note 7: Lp(Ω) is complete and hence a Banach space. p = 2, L2(Ω) is a Hilbert space with
inner product (u, v) =

∫
Ω
uvdx where this is the Lebesgue integral.

Note 8: Regarding p =∞. We say that v is essentially bounded if there is a M > 0 such that
|v(x)| ≤M for almost all x.

||v||L∞ = inf{M : |v(x)| ≤M for almost all x} def
= ess sup

x∈Ω
|v(x)| 6= sup

x∈Ω
|v(x)|

L∞ is a Banach space.

10.
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Example: Ω = (0, 1) and for n = 1, 2, ... {
1 if x 6= 1

n

n if x = 1
n

supx∈Ω |v(x)| =∞ but ess sup
x∈Ω

|v(x)| = 1.

Note 9: If the boundary Γ of Ω is smooth enough (say, Lipschitz continous) then Ck0 (Ω) (also
C∞0 (Ω)) is dense in Lp(Ω), 1 ≤ p <∞. That is for every v ∈ Lp(Ω) there are (vn) ⊂ Ck0 Ω (resp
C∞0 (Ω)) such that ||vn − v||Lp → 0 as n→∞. This does not hold for L∞.

Sobolov spaces: We need the concept of weak (or generalized or distrubutional) derivatives.
We begin with a lemma.

Lemma: Suppose that V and W are Banach spaces and A ⊂ V is a dense subspace of V (dense:
∀v ∈ V ∃(vn) ⊂ A : vn → v). Supposse that B : A→W is a bounded linear operator. Then there
is a unique linear continuous (≡ bounded) extension B̃ of B to the the whole of V such that
||B̃||B(V,W ) = ||B||B(A,W ).

Let Ω ⊂ Rd be a domain. Let v ∈ C1(Ω). Let Φ ∈ C1
0 (Ω). Integrate by parts:

(∗) =

∫
Ω

∂v

∂xi
Φdx = −

∫
Ω

v
∂Φ

∂xi
dx

This is a special case of Greens formula (see introduction of the book) w = (w1, ..., wd) vector
field, ψ scalar field then ∫

Ω

w · ∇ψdx =

∫
Γ

w · nψdx−
∫

Ω

∇wψdx

n is the outward facing unit normal of Γ.

If v ∈ L2(Ω) it might not have a classical derivative. One can define the generalized (weak)
derivative denoted by ∂v

∂xi
to be a functional with the following properties:

Definition: The weak derivative is defined as

∂v

∂xi
(Φ) = L(Φ) = −

∫
Ω

v
∂Φ

∂xi
dx, Φ ∈ C1

0 (Ω)

Suppose that L is bounded that is there is a M > 0 such that |L(Φ)| ≤M ||Φ||L2 ∀Φ ∈ C1
0 (Ω).

Then by the lemma ther is a continous linear extension of L to the whole of L2 (because C1
0 is

dense in L2). By Riesz representation theorem there is an unique w ∈ L2 such that
L(Φ) = (Φ, w) Φ ∈ L2. Therefore in this case∫

Ω

v
∂Φ

∂xi
dx = L(Φ) =

∫
Ω

Φwdx ∀Φ ∈ C1
0

In this case we say that ∂v
∂xi

is in L2. We still denote w by ∂v
∂xi

. With this notation

(∗∗) = −
∫

Ω

v
∂Φ

∂xi
dx =

∫
Ω

Φ
∂v

∂xi
, ∀Φ ∈ C1

0 (Ω)

Comparing (∗) with (∗∗) we say that for v ∈ C1
0 (Ω) the weak derivative coincides with the

classical derivative. Note: weak derivative allows for integration by parts in the appropriate way.

11.
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5 Lecture 2017.11.10

Let α be a multiindex and v ∈ L2(Ω). Define Dαv as a functional:

(Dαv)(Φ) = L(Φ) = (−1|α|
∫

Ω

)vDαΦdx, Φ ∈ C |α|0 (Ω)

If |L(Φ)| ≤; ||Φ||L2 then since Φ ∈ C |α|0 (Ω) is dense, there is a unique continuous extension of L to
the whole of L2. By the Riesz representation theorem there is w ∈ L2 which we denote by Dαv

such that (w, φ) = (Dαv,Φ) = L(Φ) = (−1)|α|
∫

Ω
vDαΦdx = (−1)|α|(v,DαΦ), ∀Φ ∈ C |α|0 (Ω).

Definition: The Sobolev space Hk(Ω) is defined by:

Hk(Ω) = {v ∈ L2(Ω) : Dαv ∈ L2(Ω) |α| ≤ k}

We endow Hk with the inner product

(u, v)Hk = (u, v)k =
∑
|α|≤k

∫
Ω

DαuDαvdx

and with the norm:

||u||Hk = ||u||k =

∑
|α|≤k

∫
Ω

(Dαu)2dx

1/2

Note: For H0 we have ||v||0 = ||v||H0 = ||v||L2 = ||v||. For H1 we have:

||v||1 =

∫
Ω

v2 +

d∑
j=1

(
∂v

∂xj
)2dx

1/2

and for H2 we have:

||v||2 =

∫
Ω

v2 +

d∑
j=1

(
∂v

∂xj
)2 +

d∑
j=1

d∑
k=1

(
∂2v

∂xj∂xk
)dx

1/2

note that the H2 norm contains all the mixed second order derivatives not just the Laplacian!
We continue by listing two important properties of the Sobolev spaces.

Property 1: Hk is a Hilbert space

Property 2: Cl(Ω) is a dense subspace of Hk(Ω) for l ≥ k, this holds if Γ = ∂Ω is smooth
enough.

Definition: The seminorm | · |k is defined by:

|v|k =

∑
|α|=k

∫
Ω

(Dαv)2dx

1/2

This is not a norm, for example |v|k = 0 for v = constant. Still the triangle inequality holds and
|λv|k = λ|v|k.

Definition: We define the trace. This is the generalization of the boundary value of a function.
If v ∈ Ck(Ω) then we may define the boundary value γv of v by restricting v to
Γ : (γv)(x) = v(x) x ∈ Γ. Then γv is a continuous function on Γ. We would like to extend this
concept to v ∈ H1.

12.
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Problem: Γ has the Lebesgue measure 0 in Rd. As functions in H1 are only defined as L2

functions the point values on Γ are not well defined.

Idea: We define the boundary space L2(Γ) as the space of functions on Γ such that the surface

integral
∫

Γ
v2ds <∞, with the norm ||v||L2(Γ) =

(∫
Γ
v2ds

)1/2
. We will first define the boundary

value of a function v ∈ C1(Ω) ⊂ H1 by restriction of v to the boundary and we try to extend this
notion to the whole of H1 using the denseness of C1(Ω) in H1.

Lemma: Let Ω = (0, 1). Then there is a constant c > 0 sich that |v(x)| ≤ C||v||1 for all
c ∈ C1(Ω) and x ∈ Ω (in particular we may take x = 0, 1).

Proof: For x, y ∈ Ω and v ∈ C1(Ω) we have v(x) = v(y) +
∫ x
y
v′(s)ds (this is nothing but usage

of the fundamental theorem of integral calculus). Then we use the triangle inequality, the
triangle inequality for integrals and Cauchy-Schwarz

|v(x) ≤ |v(y)|+ |
∫ x

y

1 ·v′(s)ds| ≤ |v(y)|+
∫ x

y

1 · |v′(s)|ds ≤ |v(y)|+
(∫ 1

0

12ds

)1/2(∫ 1

0

|v′(s)|2ds
)

The limits of integration can change from x, y to 0, 1 since the absolute value makes the integral
grow when the interval grows, thus it is fine to make enlarge our limits to the whole of Ω in our
inequality. Then we use (a+ b)2 ≤ 2a2 + 2b2:

|v(x)|2 ≤ 2

(
|v(y)|2 +

∫ 1

0

|v′(s)|2ds
)

Since the righthand side is independent of y and the second term on the lefthand side is
independent of y we can take the integral with respect to y on both sides (since the length of our
integral is 1 these objects integrate like multiplication with 1) and acquire

|v(x)|2 ≤ 2
(
||v||2L2 + ||v′||2L2

)
= 2||v||21

By continuity this result holds for x ∈ Ω. We have |v(1)| = limn→1 |v(x)| and
xn → x, |xn| ≤ m⇒ |x| ≤ m. This concludes the proof. �

Theorem: (Trace theorem) Let Ω ∈ Rd be a bounded domain. Suppose that Γ = ∂Ω is a
polygon or smooth. We define the trace operator γ by γ : C1(Ω) ⊂ H1(Ω)→ C1(Γ) ⊂ L2(Γ)
(∂v)(x) = v(x) x ∈ Γ. Then there is a bounded linear extension of γ to the whole of H1(Ω) still
denoted by γ. In particular there is a c > 0 sich athat ||γv||L2(Γ) ≤ c||v||H1(Ω) ∀v ∈ H1(Ω).

Note: In this settomg the ”boundary value” of a function in H1(Ω) only exists as a function on
L2(Γ).

Proof: γ is clearly linear. By homework problem 2.5 we only need to show that
||γv||L2(Γ) ≤ c||v||H1 v ∈ C1(Ω) as C1(Ω) is dense in H1(Ω). We will prove this for (0, 1)× (0, 1)
We will only consider one side of the rectangle, the same reasoning as follows holds for the other
three. Let (x1, x2) ∈ Ω we use the lemma applied to the function x→ v(x1, x2) and x1 = 0 (right
side of the rectangle).

v(0, x2)2 ≤ 2

(∫ 1

0

v(x1, x2)2dx1 +

∫ 1

0

(
∂v(x1, x2)

∂x1
)2dx1

)
∫ 1

0

v(0, x2)2dx2 ≤ 2

(∫ 1

0

∫ 1

0

v(x1, x2)2dx1dx2 +

∫ 1

0

∫ 1

0

(
∂v(x1, x2)

∂x1
)2dx1dx2

)
≤ 2

(
||v||2L2(Ω) + ||∇v||2L2(Ω)

)
This implies that ||v||L2(Γ) ≤ 2||v||21 �

Definition: We saw that the trace operator γ : H1(Ω)→ L2(Γ) is bounded and therfore it’s
nullspace (kernel) is a closed subspace of H1

Ω. We define H1
0 :

H1
0 (Ω) = {v ∈ H1(Ω)γv = 0}

13.
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It is a closed subspace of H1 these are all the functions in H1 that vanish on the boundary Γ in
the trace sense.

Homework: T : V →W , where V and W are normed spaces, is bounded. Show that
ker(T ) = {v ∈ V : Tv = 0} is a closed subspace of V .

Homework solution:

14.
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6 Lecture 2017.11.13

Theorem:(Poincaré inequality) Let Ω ⊂ Rd be a bounded domain. Then there is a constant c
such that ||v||L2 ≤ c||∇v||L2 for all v ∈ H1

0 . It is important that v ∈ H1
0 (zero on boundary).

Proof: Fact: C1
0 is dense in H1

0 therefore it is enough to prove that ||v||L2 ≤ c||∇v||L2

∀v ∈ C1
0 (Ω). Indeed: v ∈ H1

0 ,∃(vn) ∈ C1
0 : vn → v in H1-norm vn → v in L2, ∇vn → ∇v in L2 ⇒

||vn||L2 ≤ c||∇vn||L2 −→ ||v||L2 ≤ ||∇v||L2 as n→∞

as || · ||L2 is continuous. We will prove this for Ω = (0, 1)× (0, 1). Let v ∈ C1
0 (Ω) x ∈ (x1, x2) ∈ Ω.

Then:

v(x1, x2)− v(0, x2) =

∫ x1

0

∂v

∂x1
(s, x2)ds

This is simply the fundamental theorem of calculus. The second term on the righthand side is 0
because of compact support. We now use Cauchy-Schwarz, our second facor is the invisible 1 in
front of our derivative of v:

v(x1, x2)2 ≤
∫ x1

0

12ds ·
∫ x1

0

(
∂v

∂x1
(s, x2)

)2

ds ≤
∫ 1

0

(
∂v

∂x1
(s, x2)

)2

ds.

Here the last inequality follows from x1 ≤ 1, since we have a squared realvalued function the
integral can only get bigger if we extend our integration limits. We now integrate the above
inequality over all of Ω:∫ 1

0

∫ 1

0

v(x1, x2)2dx1dx2 ≤
∫ 1

0

∫ 1

0

(
∂v

∂x1
(s, x2)

)2

dsdx2.

The integral over x1 on the righthand side evaluates to 1 since the righthand side doesn’t depend
on x1. The righthand side definitely is smaller than the norm of the gradient squared, if we add
more derivative terms we will end up with something larger. Thus we have:∫ 1

0

∫ 1

0

v(x1, x2)2dx1dx2 ≤
∫ 1

0

∫ 1

0

(
∂v

∂x1
(s, x2)

)2

dsdx2 ≤ ||∇v||2L2 ,

which we wanted to show. �

Corollary: If v ∈ H1
0 then:

|v|21 = ||∇v||2L2 ≤ ||v||2L2 + ||∇v||2L2(= ||v||21) ≤ c||∇v||2L2 + ||∇v||2L2 = (c+ 1)||∇v||2L2 = (c+ 1)|v|21.

Therefore on H1
0 | · |1 and || · ||1 are equivalent and thus | · |1 is a norm on H1

0 not just a seminorm.

Definition: The dual space (H1
0 )∗ is denoted bu H−1. That is H−1 is the space of bounded

linear functionals on H1
0 . If we equip H1

0 with | · |1 then the norm on H−1 is given by

||L||H−1 = sup
v∈H1

0

|L(v)|
|v|1

.

Boundary value problems: We will consider a general second order elliptic problem of the
form (which we will refer to as BVP):

Lu = −∇ · (a∇u) + b · ∇u+ cu = f

where f ∈ Ω ⊂ Rd and u = 0 on Γ. a, b and c are smooth functions (b vectorfield) and f is
continuous.

Definition: A function u is a classical solution of the boundary value problem if u ∈ C2Ω and u
satisfies BVP.

15.
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Note: In applications one would like to consider more genreral f , say f ∈ L2. We need a more
general solution concept, weak or variational formulation of BVP.

Suppose that u ∈ C2(Ω) is a classical solution. We take v ∈ C1
0 (Ω) multiply both sides of the

equation BVP by v and integrate over Ω (note: integration by parts):∫
Ω

fvdx =

∫
Ω

Luvdx =

∫
Ω

−∇·(a∇u)v+b·∇uv+cuvdx = −
∫

Γ

a∇u·nvds+
∫

Ω

a∇u·∇v+b·∇uv+cuvdx.

The integral over Γ is 0 since v ∈ C1
0 . Thus we have we have:∫

Ω

a∇u · ∇v + b · ∇uv + cuvdx =

∫
Ω

fvdx ∀v ∈ C1
0 (Ω)

Claim: This holds for all v ∈ H1
0 (Ω). v ∈ H1

0 , (vn) ∈ C1
0 such that vn → v in L2 and ∇vn → ∇v

in L2. Thus our equation can be extended to H1
0 by taking the limit n→∞, we also note that

our integral is a sum of inner products in L2:

(a∇u, vn) + (b · ∇u, vn) + (cu, vn) = (f, vn) −→ (a∇u, v) + (b · ∇u, v) + (cu, v) = (f, v).

Definition: (Weak/Variational solution of BVP) Find u ∈ H1
0 such that∫

Ω

a∇u · ∇v + b · ∇uv + cuvdx =

∫
Ω

fvdx, ∀v ∈ H1
0 .

Terminology: Such a function u is called a weak or variational solution of BVP. Note: The
above calculation shows that a classical solution is weak solution. Conversely: If u is a weak
solution and u ∈ C2(Ω) then u is a classical solution. Reversing the above calculation we find that∫

Ω

fvdx =

∫
Ω

Luvdx ∀v ∈ C1
0

or ∫
Ω

(Lu− f)vdx = 0 ∀v ∈ C1
0

(Lu− f, v) = 0 ∀v ∈ C1
0 . As C1

0 is dense in L2 we conclude that Lu− f = 0 in L2 that is
Lu− f = 0 a.e. If u ∈ C2(Ω) and f ∈ C(Ω) ⇒ Lu− f ∈ C(Ω) ⇒ Lu(x)− f(x) = 0 for all x ∈ Ω.
(If g is continuous on Ω and g = 0 a.e then g = 0 ∀x ∈ Ω) Finally as u ∈ H1

0 ∩ C2(Ω), we have
(γu)(x) = u(x), x ∈ Γ⇒ u = 0 onΓ thus u is a classical solution.

Note: A weak solution is often not regular enough to be a classical solution (e.g f ∈ L2, Ω has
corners etc.).

Theorem: Suppose that a, b and c are smooth functions in Ω and that a(x) ≥ a0 > 0 and that
c(x)− 1

2∇ · b ≥ 0 for all x ∈ Ω and f ∈ L2. Then there is a unique weak solution u of BVP. That
is, there is a unique u ∈ H1

0 such that∫
Ω

a∇u · ∇v + b · ∇uv + cuvdx =

∫
Ω

fvdx ∀v ∈ H1
0 .

Furthermore there is a constant c > 0 independent of f sich that |u|1 ≤ c||f ||L2 .

Proof: We will use the Lax-Milgram Lemma on V = H1
0 with norm | · |1, bilinear form

a(w, v) =

∫
Ω

a∇w · ∇v + b · ∇wv + cwvdx v, w ∈ H1
0 = V

and linear functional L(v) =
∫

Ω
fvdx. We need to check that a is bilinear bounded and coercive,

we also need to check that L : V → R is bounded.

16.
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To begin with we will need some inequalities they are

||f · g||L2 ≤ ||f ||L∞ · ||g||L2

If F = (f1, ..., fd) G = (g1, ..., gd)|
∫

Ω

F ·Gdx| ≤ ||F ||L2 · ||G||L2 where ||F ||L2 =

∫
Ω

d∑
j=1

f2
j dx

||F ·G||L2 ≤ max
1≤i≤d

||fi||L∞ ||G||L2

||fF ||L2 ≤ ||f ||L∞ ||F ||L2 .

The proof continues in the next lecture.

17.



TMA690 Partialla Differentialekvationer Lecture notes
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Proof: We will use Lax-Milgram Lemma: If V is a Hilbert space, a : V × V → R is a bounded
coercive bilinear form on V and L : V → R is a bounded linear functional on V then there is a
unique u ∈ V such that a(u, v) = L(v) ∀v ∈ V and ||u||V ≤ c||L||V ∗ = supv∈V

|L(v)|
||v||V .

Let V = H1
0 with norm | · |1, define

a(w, v) =

∫
Ω

a∇w · ∇v + b · ∇wv + cwvdx v, w ∈ H1
0 = V

and define

L(v) =

∫
Ω

fvdx v ∈ H1
0 = V.

As stated we need to show: a is (1) bilinear, (2) bounded and (3) coercive, we also have to check
if (4) L is bounded. It is easy to see that a is bilinear, that takes care of criterion (1). We now
show that a is bounded, that is |a(w, v)| ≤ K|w|1|v|1:

|a(w, v)| ≤
∣∣∣∣∫

Ω

a∇w · ∇vdx
∣∣∣∣+

∣∣∣∣∫
Ω

b · ∇wvdx
∣∣∣∣+

∣∣∣∣∫
Ω

cwvdx

∣∣∣∣ C.S
≤

||a∇w||L2 ||∇v||L2 + ||b · ∇w||L2 ||v||L2 + ||cw||L2 ||v||L2 ≤

||a||L∞ ||∇w||L2 ||∇v||L2 +

(
max

1≤i≤d
||bi||L∞

)
||∇w||L2 ||v||L2 + ||c||L∞ ||w||L2 ||v||L2

Poincaré
≤

||a||L∞ |v|1|w|1 +M

(
max

1≤i≤d
||bi||L∞

)
|w|1|v|1 +M2||c||L∞ |v|1|w|1 ≤ K|w|1|v|1

(note that we have used the definition of the seminorm here) where

K = 3 max

{
||a||L∞ ,+M

(
max

1≤i≤d
||bi||L∞

)
,M2||c||L∞

}
.

We have now shown the boundedness of a. We now show coercivity that is |a(v, v)| ≥ α||v||2V .

a(v, v) =

∫
Ω

a|∇v|2 + b · ∇vv + cv2dx =

∫
Ω

a|∇v|2 +
1

2
b · ∇(v2) + cv2dx

Note: ∇ · (bv2) = v2∇ · b+ b · ∇(v2). Also since v is zero on Γ since v ∈ H1
0 the divergence

theorem gives us that∫
Ω

∇ · (bv2)dx =

∫
γ

b · nv2ds = 0⇒
∫

Ω

b · ∇(v2)dx = −
∫

Ω

v2∇ · bdx.

Thus we have that

a(v, v) =

∫
Ω

a|∇v|2 − 1

2
v2∇ · b+ cv2dx =

∫
Ω

a|∇v|2 + (c− 1

2
v2∇ · b)v2dx

≥
∫

Ω

a|∇v|2dx ≥ a0

∫
Ω

|∇v|2dx = a0|v|21,

(here we used that c− 1
2∇ · b ≥ 0) this means a is coercive. Finally, we need to show that L is

bounded, that is show ∃C > 0 : |L(v)| ≤ C||v||V ). We have

|L(v)| = |(v, f)|
C.S
≤ ||v||||f ||

Poincaré
≤ C||f |||v|1 ⇒

|L(v)|
|v|1

≤ C||f ||

⇒ ||L||V ∗ = sup
v∈V

|L(v)|
|v|1

≤ C||f ||.

18.
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Which shows that L is bounded. Now by the Lax-Milgram lemma there is a unique w ∈ V = H1
0

such that a(w, v) = L(v)∀v ∈ V = H1
0 and |w|1 = ||w||V ≤ C||L||V ∗ ≤ K||f ||. �

When b = 0 the bilinear form a is symmetric, then the unique weak solution can be characterized
as the minimizer of the energy functional F (v) = 1

2a(v, v)− L(v).

Theorem: (Dirichlet’s principle) Suppose that b = 0, a, c are smooth in Ω and a(x) > a0 > 0
c(x) >≥ 0 x ∈ Ω then the unique solution of BVP satisfies F (u) ≤ F (v) ∀v ∈ H1

0 where

F (v) =
1

2

∫
Ω

a|∇v|2cv2dx−
∫

Ω

fvdx

with equality only if v = u.

Proof: Theorem A.2 (in the book) shows that F (u) ≤ F (v) ∀v ∈ V = H1
0 as u is a weak

solution. If w ∈ H1
0 such that F (w) ≤ F (v) for all v ∈ H1

0 then by theorem A.2, w is a weak
solution. By uniqueness u = w. �

Inhomogeneous BVP: Classical formulation: u ∈ C2 such that Lu = f in Ω, u = g on Γ where
f and g are given continuous functions.

We would like to consider this problem when f ∈ L2(Ω), g ∈ L2(Γ). Weak formulation: Find
u ∈ H1 such that a(u, v) = L(v) for all v ∈ H1

0 γu = g where γ1
H → L2(Γ) is the trace operator

a(u, v) =

∫
Ω

a∇u · ∇v + b · ∇uv + cuvdx,

L(v) =

∫
Ω

fvdx.

Call this problem BVP1.

Theorem: Suppose that there is an u0 ∈ H1 such that γu0 = g. If a, b, c are smooth,
a(x) ≥ a0 > 0, c(x)− 1

2∇b(x) ≥ 0 for all x ∈ Ω, f ∈ L2(Ω), g ∈ L2(Γ) then there is a unique weak
solution of BVP1.

Proof: We look at the problem: find w ∈ H1
0 such that a(w, v) = L(v)− a(w, v) for all v ∈ H1

0 .
As a : H1

0 ×H1
0 → R is bounded and coercive (like before), L is bounded, and V → a(u0, v) is

also bounded on H1
0 . We have that

|a(u0, v)| ≤ K||u0||1||v||1.

By Lax-Milgram there is a unique w ∈ H1
0 such that a(w, v) = L(v)− a(u0, v) ∀v ∈ H1

0 . Then
u := w + u0 is a weak solution of BVP1.

a(u, v) = a(w, v) + a(u0, v) = L(v)− a(u0, v) + a(u0, v) = L(v).

Also
γu = γw + γu0 = 0 + g = g,

hence u is a weak solution of BVP1. Uniqueness: Suppose that w1 and w2 are weak solutions of
BVP1. Let u = w1 − w2,

a(u, v) = a(w1, v)− a(w2, v) = L(v)− L(v) = 0 = (0, v) ∀v ∈ H1
0 .

γu = γw1 − γw2 = g − g = 0,

hence u ∈ H1
0 . Furthermore u solves a(u, v) = (0, v) for all v ∈ H1

0 . Buth this has a unique
solution which has to be u, which that satisfies |u|1 < ||f || = c||0|| = 0⇒ u = 0 in
H1 ⇒ w1 = w2. �
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Neumann problem: We consider the classical formulation: Find u ∈ C2(Ω) such that
Au = −∇ · (a∇u) + cu = f in Ω, ∂

∂n = 0 on Γ, where ∂
∂n = n · ∇u where n is the unit normal of

Γ. Let u ∈ C2(Ω) be a classical solution and v ∈ C1(Ω) then∫
Ω

vfdx =

∫
Ω

Auvdx =

∫
Ω

−∇ · (a∇u) + cudx = −
∫

Γ

a∇u · nvds+

∫
Ω

a∇u · ∇v + cuvdx =

∫
Ω

a∇u · v + cuvdx ∀v ∈ C1(Ω).

Here we used that the normal derivative is 0. By limit argument using that C1(Ω) is dense in
H1(Ω) we set ∫

Ω

a∇u · ∇v + cuvdx =

∫
Ω

fvdx ∀v ∈ H1.

20.
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Neumann problem continued (Weak formulation): Find u ∈ H1(Ω) such that∫
Ω

a∇u · ∇v + cuvdx =

∫
Ω

dx ∀v ∈ H1(Ω),

if u is a weak solution and u ∈ C1 then u is a classical solution. Indeed: reversing the steps
before we get ∫

Ω

fvdx =

∫
Ω

−∇ · (a∇u)v + cuvdx+

∫
Γ

a
∂u

∂n
vds ∀v ∈ H1.

Let first v ∈ C1
0 ⊂ H1 ⇒∫

Ω

fvdx = −
∫

Ω

−∇ · (a∇u) + cuvdx ∀v ∈ C1
0 ⇒∫

Ω

(Lu− f)vdx = 0 ∀v ∈ C1
0 .

Since C1
0 is dense in L2, we get Lu = f a.e. If u ∈ C2(Ω), f ∈ C(Ω)⇒ Lu(x) = f(x) in Ω⇒∫

Γ

a
∂u

∂n
vds = 0 ∀v ∈ H1 ⇒ ∂u

∂n
= 0 on Γ.

Theorem: Let a, b, c be smooth in Ω, a(x) ≥ a0 > 0 ∀x ∈ Ω, c(x) ≥ c0 > 0 and f ∈ L2. Then the
Neumann boundary value problem has a unique weak solution.

Proof: Let

a(w, v) =

∫
Ω

a∇w∇v + cwvdx, v, w ∈ H1

and let

L(v) =

∫
Ω

fvdx v ∈ H1.

To Show: There is a unique u ∈ H1 : a(u, v) = L(v)∀v ∈ H1. To show: a is bounded and coercive
(a is clearly symmetric and bilinear!).

Bounded:

|a(w, v)| ≤
∣∣∣∣∫

Ω

a∇w · ∇vdx
∣∣∣∣+

∣∣∣∣∫
Ω

cwvdx

∣∣∣∣ C.S
≤ ||a∇w||L2 ||∇v||L2 + ||cu||L2 ||v||L2 ≤

||a||L∞ ||∇w||||∇v||+ ||c||L∞ ||w||||v|| ≤

||a||L∞(||w||+ ||∇w||)(||c||+ ||∇v||) + ||c||L∞(||w||+ ||∇w||)(||v||+ ||∇v||) = k||w||1||v||1,

and where k = ||a||L∞ + ||c||L∞ .

Coercive:

By the Riesz representation theorem (or more generally by Lax-Milgram)
∃!u ∈ H1 : a(u, v) = L(v)∀v ∈ H1
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