TMA690 Partiella Differentialekvationer

Johan Friemann

March 13, 2018

Lecture notes, and solutions to a selection of homework problems.
1 Lecture 2017.10.30

Notation: A multi index α is a vector in \mathbb{R}^d whose components α_j are non-negative integers. The length $|\alpha|$ of α is defined by

$$|\alpha| = \sum_{j=1}^{d} \alpha_j.$$

If $v : \mathbb{R}^d \to \mathbb{R}$ we may use the multi index notation to define partial derivatives of order $|\alpha|$:

$$D^\alpha = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \ldots \partial x_k^{\alpha_k}}.$$

Example: $\alpha = (1, 0, 1)$, $|\alpha| = 2$

$$D^\alpha v = \frac{\partial^2 v}{\partial x_1 \partial x_3}.$$

Notation: For $\xi \in \mathbb{R}^d$ we define $\xi^\alpha = \xi_1^{\alpha_1} \ldots \xi_d^{\alpha_d}$.

Example: $\alpha = (1, 0, 1)$, $\xi = (\xi_1, \xi_2, \xi_3) \Rightarrow \xi^\alpha = \xi_1 \cdot \xi_3$.

In this course we will mainly consider linear partial differential equations of the form

$$\alpha u = \alpha(x, D)u = \sum_{|\alpha| \leq m} a_\alpha(x) D^\alpha u = f, \text{ in } \Omega$$

Ω is an open connected set.

Definition: We say that the direction $\xi \in \mathbb{R}^d$, $\xi \neq 0$, is a characteristic direction for the operator $\alpha(x, D)$ at x if

$$\Lambda(\xi) = \Lambda(\xi, x) = \sum_{|\alpha| = m} a_\alpha(x) \xi^\alpha = 0.$$

Note: in the sum we only take $|\alpha| = m$ (principle part).

Definition: A $(d-1)$-dimensional surface is given locally as a function $F : \mathbb{R}^d \to \mathbb{R}$, $F(x_1, \ldots, x_d) = 0$. The normal is given as $\nabla F = \left(\frac{\partial F}{\partial x_1}, \ldots, \frac{\partial F}{\partial x_n} \right)$ for $x \in \mathbb{R}^d$ on surface.

Main Examples:

Example: First order scalar equations:

$$\sum_{j=1}^{d} a_j(x) \frac{\partial u}{\partial x_j} + a_0(x) u = f, \quad \left(\sum_{|\alpha| \leq 0} a_\alpha(x) D^\alpha u = f \right)$$

Characteristic equation:

$$\sum_{j=1}^{d} a_j(x) \xi_j = 0 \quad \left(\sum_{|\alpha| = 1} a_\alpha(x) \xi^\alpha = 0 \right)$$

Then ξ is a characteristic direction if ξ is perpendicular to $(a_1(x), \ldots, a_d(x))$.

Example: Let

$$\Delta u = \sum_{j=1}^{d} \frac{\partial^2 u}{\partial x_j^2}.$$
Poison’s equation: \(-\Delta u = f\). Characteristic equation \(\Lambda(\xi) = -(\xi_1^2 + ... + \xi_d^2) = 0 \Rightarrow \xi = 0\). This means that there are no characteristic directions.

Example: Heat equation \(\frac{\partial u}{\partial t} - \Delta u = f\). We consider in \(\mathbb{R}^{d+1}\) with variables \((x,t) x \in \mathbb{R}^d\) and \(t \in \mathbb{R}\). With variables \((\xi,\tau)\) the characteristic equation \(\Lambda(\xi,\tau) = -(\xi_1^2 + ... + \xi_d^2) + \tau^2 = 0\). For example the vector \((0,0,...,0,1)\) is a characteristic direction and the plane \(\tau = 0\) is a characteristic surface.

Example: Wave equation: \(\frac{\partial^2 u}{\partial t^2} - \Delta u = f\). Consider in \(\mathbb{R}^{d+1}\) with points \((x,t)\). Characteristic equation with variables \((\xi,\tau)\). \(\Lambda(\xi,\tau) = -\langle \xi \rangle^2 \cdot \mathbf{A} = 0\), \(\tau = \pm |\xi|\). Characteristic directions \((\xi, \pm |\xi|)\), \(\xi \neq 0\) anything.

Characteristic surface: Given \(x \in \mathbb{R}^d\) and \(t \in \mathbb{R}\) consider the cone \(|x-x, t-t|^2 = 0\). \(\nabla F = (2(x_1 - x_1, ..., 2(x_d - x_d), -2(t - t)) = 2(x-x, t-t)\). This is of the form \((\xi, \pm |\xi|) \Rightarrow\) this cone is a characteristic surface.

Classification of 2:nd order PDE’s:

Consider second order PDE with constant coefficients:

\[
\sum_{j,k=1}^d a_{jk} \frac{\partial^2 u}{\partial x_j \partial x_k} + \sum_{j=1}^d b_j \frac{\partial u}{\partial x_j} + cu = f
\]

where \(a_{jk} = a_{kj}, a_{jk}, b_j, c\) constants. Characteristic equation

\[
\Lambda(\xi) = \sum_{j,k} a_{jk} \xi_j \xi_k = \xi \cdot \mathbf{A} \xi = \begin{bmatrix} a_{11} & \cdots & a_{1d} \\ \vdots & \ddots & \vdots \\ a_{d1} & \cdots & a_{dd} \end{bmatrix} \begin{bmatrix} \xi_1 \\ \vdots \\ \xi_d \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_d \end{bmatrix}
\]

\(A\) is symmetric, we can use the Spectral Theorem

\[
A = PDP^{-1}, \quad P^{-1} = P^T \quad D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_d \end{bmatrix}
\]

We introduce a change of variables \(P\eta = \xi\)

\[
\Lambda(\xi) = \Lambda(P\eta) = P \eta \cdot A \eta \cdot P^T = P \eta \cdot PDP^{-1} \eta = P \eta \cdot PD \eta = P^T P \eta \cdot D \eta = \eta D \eta = \sum_{j=1}^d \lambda_j \eta_j^2.
\]

Definition: A differential equation is elliptic if all \(\lambda_j\) has the same sign. It is hyperbolic if all but one \(\lambda_j\) has the same sign and it parabolic if the remaining \(\lambda_j = 0\).

Let \(V\) be a vector space over \(\mathbb{R}\).
Definition: An inner product on \(V \) is a function \(V \times V \to \mathbb{R} \) such that

1. \((\lambda u + \mu v, w) = \lambda (u, w) + \mu (v, w) \quad u, w \in V, \lambda, \mu \in \mathbb{R} \)
2. \((u, v) = (v, u) \quad u, v \in V \)
3. \((v, v) > 0 \) for all \(v \in V, v \neq 0 \)

The pair \((V, (\cdot, \cdot))\) is called an inner product space.

Homework: Show that the following is true:

(a) \((v, v) = 0 \Leftrightarrow v = 0 \)

(b) \((w, \lambda u + \mu v) = \lambda (w, u) + \mu (w, v) \)

Homework solution: This is shown by using our three axioms.

(a): We begin by showing \(\Rightarrow \): Let \(v = \lambda u \) where \(u \neq 0 \). Then it follows from axiom (1) that \((v, v) = (\lambda u, \lambda u) = \lambda (u, u) \). Then we use axiom (2) \(\lambda (u, u) = \lambda (\lambda u, u) = \lambda^2 (u, u) \). Since \((v, v) = 0 \) it follows that \(\lambda^2 (u, u) = 0 \) but we defined that \(u \neq 0 \) thus it follows from axiom (3) that \((u, u) > 0 \) which means that \(\lambda^2 = 0 \), which implies that \(v = 0 \).

Now we show \(\Leftarrow \): As before let \(v = \lambda u \) where \(u \neq 0 \). By the same reasoning as before we have that \((v, v) = \lambda^2 (u, u) \), and that \((u, u) > 0 \). But since \(v = 0 \) and \(u \neq 0 \), \(\lambda \) has to be 0, which in turn means that \((v, v) = 0 \).

(b): Axiom (2) gives us that \((w, \lambda u + \mu v) = (\lambda u + \mu v, w) \), axiom (1) then gives us that \((\lambda u + \mu v, w) = \lambda (u, w) + \mu (v, w) \). Finally we use axiom (2) again and we recieve \(\lambda (u, w) + \mu (v, w) = \lambda (v, u) + \mu (v, v) \). \(\square \)

Example: Let \(C[a, b] \) denote the set of real-valued continous functions on \([a, b]\) with addition \((f + g)(x) = f(x) + g(x)\) and scalar multiplication \((\lambda f)(x) = \lambda f(x)\). Define \((f, g) = \int_a^b f(x)g(x)dx\).

Homework: Show that \((C[a, b], (\cdot, \cdot))\) is an inner product space.

Homework solution: We have to show that the three axioms hold for all the elements in \(C[a, b] \) with the given inner product.

1: Consider \((\lambda f + \mu g, h)\), where \(f, g, h \) are arbitrary elements in \(C[a, b] \) and \(\lambda, \mu \) are arbitrary real constants. Our inner product gives us \(\int_a^b (\lambda f(x) + \mu g(x))h(x)dx \), we use the linearity of the integral \(\int_a^b (\lambda f(x) + \mu g(x))h(x)dx = \lambda \int_a^b f(x)h(x)dx + \mu \int_a^b g(x)h(x)dx \). Thus axiom (1) holds.

2: Consider \((f, g)\) defined as before. According to our inner product \((f, g) = \int_a^b f(x)g(x)dx = \int_a^b f(x)g(x)dx = \int_a^b (g, f) \). This means that axiom (2) holds.

3: Consider \(f \in C[a, b] \) such that \(f \) isn’t the zero function on our interval. We have that \((f, f) = \int_a^b f(x)^2dx \). \(f(x)^2 \geq 0 \) for all \(x \) and since it isn’t the zero function \(f(x) \) has to have non-zero somewhere, thus \(f(x)^2 > 0 \) somewhere. Since we consider \(f \in C[a, b] \) \(f(x)^2 \) has to be non-zero on atleast some interval in \([a, b]\) and 0 at least zero everywhere else, thus by the definition of the integral \(\int_a^b f(x)^2dx > 0 \Rightarrow (f, f) > 0 \). Axiom (3) holds. \(\square \)
2 Lecture 2017.10.31

Definition: A linear functional is a function $f : V \rightarrow \mathbb{R}$ that is linear $f(\lambda u + \mu v) = \lambda f(u) + \mu f(v)$, $\lambda, \mu \in \mathbb{R}$, $u, v \in V$.

Definition: A bilinear form $a : V \times V \rightarrow \mathbb{R}$ is a function such that $a(\lambda u + \mu v, w) = \lambda a(u, w) + \mu a(v, w)$ and $a(w, \lambda u + \mu v) = \lambda a(w, u) + \mu a(w, v)$, $u, v, w \in V$ $\lambda, \mu \in \mathbb{R}$. It is symmetric if $a(u, v) = a(v, u)$ and it is positive definite if $a(v, v) > 0$ for all $v \in V$ such that $v \neq 0$.

Homework: Let $V = (C[a, b], (\cdot, \cdot))$ be an inner product space with the inner product $(f, g) = \int_a^b f(x)g(x)dx$. Show the following:

(a): $F(v) = \int_a^b v(x)dx$ is a linear functional.

(b): $F(v) = v(a)$ is a linear functional.

(c): $a(f, g) = \int_a^b f(x)g(x)(1 + x^2)dx$ is a positive definite bilinear form.

Homework solution: We use the definitions:

(a): Let v, u be elements from $C[a, b]$ and λ, μ elements from \mathbb{R}. Now consider $F(\lambda v + \mu u) = \int_a^b \lambda v(x) + \mu u(x)dx = \lambda \int_a^b v(x)dx + \mu \int_a^b u(x)dx$. The integrals evaluate to real numbers. This mapping fulfills the condition defined above, it is linear in its argument and it maps functions to real numbers.

(b): Let u, v and λ, μ be defined as above. Now consider $F(\lambda v + \mu u) = \lambda v(a) + \mu u(a)$. This mapping fulfills the condition defined above, it is linear in its argument and it maps functions to real numbers.

(c): Let $f, g, h \in C[a, b]$ and let $\lambda, \mu \in \mathbb{R}$. We begin by showing it’s a bilinear form.

$a(\lambda f + \mu g, h) = \int_a^b (\lambda f(x) + \mu g(x))h(x)(1 + x^2)dx = \lambda \int_a^b f(x)h(x)(1 + x^2)dx + \mu \int_a^b g(x)h(x)(1 + x^2)dx = \lambda a(f, h) + \mu a(g, h)$. We can see that if it is linear in its first argument a has to be linear in its second argument, following from elementary properties of the integral. To show that it is positive definite we consider $a(f, f) = \int_a^b f(x)^2(1 + x^2)dx$ and let f not be the zero function. With $f \in C[a, b]$ we have that it has to be non-zero on atleast some interval in $[a, b]$, thus $f(x)^2$ is greater than zero on atleast some interval in $[a, b]$ and at least zero everywhere else. Also, $(1 + x^2) > 0$ on $[a, b]$. Thus the integral has to be > 0, which means that a is positive definite. \[Q.E.D. \]

Definition: We say that $u \in V$ and $v \in V$ are orthogonal if $(u, v) = 0$. Notation: $u \perp v$.

Definition: Let V be a vector space over \mathbb{R} then a function $\| \cdot \| : V \rightarrow \mathbb{R}_+$ is a norm on V if:

\begin{align*}
(a) \quad & \|v\| > 0 \quad \forall v \neq 0 \\
(b) \quad & \|\lambda v\| = |\lambda|\|v\| \quad \forall v \in V, \lambda \in \mathbb{R} \\
(c) \quad & \|u + v\| \leq \|u\| + \|v\| \quad u, v \in V
\end{align*}

Note: $v = 0 \iff \|v\| = 0$. The pair $(V, \| \cdot \|)$ is called a normed space.

Homework: Let $V = C[a, b]$ be a vector space with the norm $\|f\| = \sup_{x \in [a, b]} |f(x)| = \max_{x \in [a, b]} |f(x)|$. Show that this is a normed space.

Homework solution: We have to show that the given norm fulfills the axioms given any element from V.

(a): $|f| \geq 0$, and since according to the axiom f can’t be the zero function it has to be > 0
atleast on some interval. If we take the maximum value on that interval we will recieve a real number > 0.

(b): This follows directly from the properties of the supremum/maximum.

\[\sup_{x \in [a, b]} |\lambda f| = \lambda \sup_{x \in [a, b]} |f|. \]

\[\sup_{x \in [a, b]} |f + g| \leq \sup_{x \in [a, b]} (|f| + |g|) \leq \sup_{x \in [a, b]} |f| + \sup_{x \in [a, b]} |g|. \]

Thus \(|f + g| \leq |f| + |g|\).

\(\Box\)

If \((V, \langle \cdot , \cdot \rangle)\) is an inner product space then \(|v| = (v, v)^{1/2}\) is a norm.

Proposition: Cauchy-Schwartz inequality: Let \((V, \langle \cdot , \cdot \rangle)\) be an inner product space. Then \(|\langle u, v \rangle| \leq ||u|| ||v||\), \(u, v \in V\) with equality if and only if \(u = \lambda v\) for some \(\lambda \in \mathbb{R}\).

Proof: If \(v = 0\) the result holds trivially. Let \(t \in \mathbb{R}\) and consider

\[0 \leq (u + tv, u + tv) = ||u||^2 + 2\langle u, v \rangle + t^2||v||^2 := f(t). \]

This is a quadratic function, since it’s greater than 0 for all \(t\) it also has to be greater than 0 in its minimum. It can easily be shown that the minimum is \(a = -\frac{\langle u, v \rangle}{||v||^2}\).

\[0 \leq f(a) = ||u||^2 - 2\frac{\langle u, v \rangle^2}{||v||^2} + \frac{(u, v)^2}{||v||^2} = ||u||^2 - \frac{(u, v)^2}{||v||^2} \Rightarrow (u, v)^2 \leq ||u||^2 ||v||^2 \Rightarrow |(u, v)| \leq ||u|| ||v|| \]

If \(u = -tv\) we have equality. \(\Box\)

Proposition Triangle inequality: \(|u + v| \leq |u| + |v|\).

Proof: We prove this by using Cauchy-Schwartz inequality

\[||u + v||^2 = (u + v, u + v) = ||u||^2 + 2\langle u, v \rangle + ||v||^2 \leq ||u||^2 + 2||u|| ||v|| + ||v||^2 \]

\[(||u|| + ||v||)^2 \Rightarrow ||u + v|| \leq ||u|| + ||v|| \]

\(\Box\)

Homework: Prove the Parallellogram identity: \(|u + v|^2 + |u - v|^2 = 2(||u||^2 + ||v||^2)\)

Homework solution: We simply use the axioms and the definition of the norm!

\[||u + v||^2 + ||u - v||^2 = (u + v, u + v) + (u - v, u - v) = (u, u + v) + (v, u + v) + (u, u - v) - (v, u - v) = (u, u) + (u, v) + (v, u) + (v, v) + (u, u) - (v, u) - (v, v) = 2(||u||^2 + ||v||^2) \]

\(\Box\)

Definition: Let \((x_n) \subset V\) be a sequence in \((V, ||\cdot||)\), we say \(x_n \to x \in V\) as \(n \to \infty\) alternatively written as \(\lim_{n \to \infty} x_n = x\) if \(\lim_{n \to \infty} ||x_n - x|| = 0\), with \(\varepsilon - \delta\)-notaion:

\(\langle \forall \varepsilon > 0 \rangle (\exists N) : n \geq N \Rightarrow ||x_n - x|| < \varepsilon.\)

Definition: A sequence is a Cauchy-sequence if \((\forall \varepsilon > 0)(\exists N) : m, n \geq N \Rightarrow ||x_n - x_m|| < \varepsilon\). It can be stated informally as: \(\lim_{m,n \to \infty} ||x_n - x_m|| = 0\).

Fact: If \((x_n)\) is convergent then \(x_n\) is a Cauchy-sequence. \(\mathbb{Q}\) The converse is not true! \(\mathbb{Q}\)

A normed space is called complete if every Cauchy-sequence converges. A complete normed space is called a Banach space and a complete inner product space is called a Hilbert space.

Example: \(C[a, b], ||f|| = \sup_{x \in [a, b]} |f|\) is a Banach space.
Homework: Show that $C[a,b], ||f|| = \int_a^b f(x)^2 \frac{1}{2}$ is not complete.

Homework solution:
Find a function that is Cauchy but that doesn’t converge to a continous function. Try a function which converges to a step function.

Example:

\[V = \{(x_n)\}, \quad x_n \in \mathbb{R}, \quad \sum_{n=1}^{\infty} |x_n|^2 < \infty, \quad ((x_n),(y_n)) = \sum_{n=1}^{\infty} x_n \cdot y_n \]

\((V,(\cdot,\cdot))\) is complete.

Definition: Let \(V,W\) be normed spaces. A mapping \(B : V \to W\) is linear if \(B(\lambda u + \mu v) = \lambda Bu + \mu Bv\) \(u,v \in V, \lambda,\mu \in \mathbb{R}\). It is bounded if there is \(c > 0\) such that \(||Bv||_W \leq c||v||_V\) for all \(v \in V\). We may then define the norm of \(B\) by

\[||B|| = \sup_{v \in V, v \neq 0} \frac{||Bv||_W}{||v||_V} = \sup_{||v||_V = 1} ||Bv||_W = \inf\{c \in \mathbb{R} : ||Bv||_W \leq c||v||_V\text{ for all } v \in V\} \]

\[\Rightarrow ||Bv||_W \leq ||B|| \cdot ||v||_V \]

Homework: Show the equalities above.

Homework solution:

Definition: We denote the set of bounded linear operators by \(\mathcal{B}(V,W)\) if \(V = W, \mathcal{B}(V)\). This can be made to be a vector space:

\[(B_1 + B_2)v = B_1v + B_2v \quad v \in V \]

\[(\lambda B)v = \lambda Bv \quad \lambda \in \mathbb{R}, \quad v \in V \]

Then \(\mathcal{B}(V,W)\) is a normed space and if \(W\) is complete so is \(\mathcal{B}(V,W)\).

Homework: Show that \(||B||\) defined as above is a norm.

Homework solution:

Lemma: \(B \in \mathcal{B}(V,W)\) \(\iff\) \(B\) is continuous that is \(x_n \to x \Rightarrow Bx_n \to Bx\).

Definition: Let \(V\) be a normed space. The space of continuous linear functionals is \(\mathcal{B}(V,\mathbb{R})\). Notation: \(V^* = \mathcal{B}(V,\mathbb{R})\), \(V^*\) is called the dual space of \(V\). Since \(\mathbb{R}\) is complete so is \(V^*\).

A bilinear form \(a : V \times V \to \mathbb{R}\) is bounded if there is \(c > 0\) sicj that \(|a(u,v)| \leq c||u|| \cdot ||v||\).

Definition: The ball centered at \(v_0 \in V\) with radius \(r > 0\) is \(B_r(v_0) = \{v \in V : ||v - v_0|| < r\}\).

Definition: A set \(A \subset V\) is open if for every \(v_0 \in A\) there is \(r = r(v_0)\) such that \(B_r(v_0) \subset A\).

Definition: \(A\) is closed if \(A^c = V \setminus A\) is open.

Homework: Show that \(A\) is closed \(\iff (x_n) \in A, x_n \to x \in V \Rightarrow x \in A\).

Homework solution:

Definition: \(A \subset V\) is a dense subset of \(V\) of for all \(v \in V\) there is \(v_n \in A \quad v_n \to v\).

Theorem: Let \(V\) be a Hilbert space and \(V_0 \subset V\) be a closed subspace. Then any \(v \in V\) can be uniquely be written as \(v = v_0 + w\) where \(v_0 \in V_0\) and \(w \perp v_0\). The element \(v_0\) can be

6.
characterised as the unique element in V_0 such that $||v - v_0|| = \min\{||v - u||, u \in V_0\}$. The element v_0 is denoted by $P_{V_0}v$.

\[V_0 \]
3 Lecture 2017.11.06

Corollary: V is a Hilbert space, $V_0 \subset V$ is a closed subspace, $V_0 \neq V$. Then $w \in V \setminus V_0$, $w \perp v_0$

Proposition: $V_0 \neq V \Rightarrow \exists v_0 \in V \setminus V_0$, $w_0 \neq 0$. Projection theorem:

\[w_0 = v_0 + w, \quad w = v_0 \perp w \neq 0 \text{ as } w_0 \neq v_0. \]

Theorem: (Riesz Representation Theorem) Let V be a Hilbert space and $L : V \to \mathbb{R}$ be a bounded linear functional on V (i.e. $L \in V^*$). Then there is a unique $u \in V$ such that $L(V) = (v, u)$ for all $v \in V$. Furthermore $\|L\|_V = \|u\|$.

Proof: See the book.

Note: The Riesz representation theorem identifies continuous linear functionals with elements of the Hilbert space V.

Homework: Show that the map $\Phi : L \to u (V^* \to V)$ is linear, surjective and isometric. $(V$ and V^* are isometrically isomorphic).

Homework solution:

Often in this course we will study the following problem: Let V be a Hilbert space and $L : V \to \mathbb{R}$ be a bounded and $a : V \times V \to \mathbb{R}$ bilinear positive definite. Problem: Find $u \in V$ such that $a(u, v) = L(v)$ for all $v \in V$. Call this problem (V).

Definition: A bilinear form $a : V \times V \to R$ is called coercive of there is an $\alpha > 0$ such that $a(v, v) \geq \alpha \|v\|^2$ for all $v \in V$. Note that coercive implies positive definite, but positive definite does not imply coercive. In finite dimensions however, positive definite and coercive is equivalent.

If $a : V \times V \to \mathbb{R}$ is positive definite, symmetric and bilinear, then a is an inner product on V.

If a is coercive and bounded, then the norm (energy norm) $\|v\|_a = a(v, v)^{1/2}$ is equivalent to the original norm $\|\cdot\|$. $\alpha \|v\|^2 \leq a(v, v) \leq M \|v\|^2$.

In summary: If $a : V \times V \to \mathbb{R}$ is bilinear, coercive, symmetric and bounded then: the energy norm $\|\cdot\|_a$ and $\|\cdot\|$ are equivalent and therefore $(V, \|\cdot\|_a)$ is complete (hence a Hilbert space). Also L is bounded linear on $(V, \|\cdot\| \Rightarrow)$ bounded linear on $(V, \|\cdot\|_a)$.

In this case the Riesz representation theorem on $(V, \|\cdot\|_a)$ yields that there is an unique $u \in V : L(v) = a(v, u) = a(u, v)$ for all $v \in V$. Thus equation (V) has a unique solution.

Energy estimate: We may bound the norm of the solution in terms of L:

\[\alpha \|u\|^2 \leq a(u, u) = L(u) \leq \|L\|_V \|u\| \Rightarrow \|u\| \leq \|L\|_V^{1/2}. \]

The solution to (V) may be characterized through a minimization problem:

Theorem: If $a : V \times V \to \mathbb{R}$ is symmetric and positive definite then u is a solution to problem $(V) \iff F(u) \leq F(v)$ for all $v \in V$ $F(u) = \frac{1}{2}a(u, u) - L(u)$

Proof: Suppose that u is a solution to (V). Set $w = v - u \Rightarrow v = u + w$. Then

\[F(v) = F(u + w) = \frac{1}{2}a(u + w, u + w) - L(u + w) = \frac{1}{2}a(u, u) - L(u) + a(u, w) - L(w) + \frac{1}{2}a(w, w) \]

The sum of the first two terms are equal to $F(u)$ by definition. The sum of the second two terms are equal to 0 since u is a solution. Thus we have $F(v) \geq F(u)$ since $a(w, w) \geq 0$.

Now suppose $F(u) \leq F(v)$ for all $v \in V$. Consider $g(t) = F(u + tv) \geq F(u) = g(0)$, where t is a
real parameter we have

\[g(t) = F(u + tv) = \frac{1}{2} a(u + tv, u + tv) - L(u + tv) = \frac{1}{2} t^2 a(v, v) + (a(u, v) - L(v)) t + \frac{1}{2} a(u, u) - L(u) \]

This is a quadratic in \(t \) and it has a minimum at 0 thus

\[0 = g'(0) = a(u, v) - L(v) \Rightarrow a(u, v) = L(v) \]

Note: \(F \) is called the energy functional and \((V) \) the variational equation for \(F \).

There is an extension when \(a \) is non-symmetric.

Theorem: (Lax-Milgram) Let \(V \) be a Hilbert space and \(a : V \times V \to \mathbb{R} \) be a bounded coercive bilinear form and \(L : V \to \mathbb{R} \) be a bounded linear functional then there is a unique \(u \in V \) such that

\[a(u, v) = L(v) \]

for all \(v \in V \). (That is \((V) \) has a unique solution)

Note: Unlike the symmetric case before there is no characterization of \(u \) through the minimization of an energy functional. But we still have

\[||u|| \leq \frac{1}{\alpha} ||L||_{V^*}. \]

Function spaces: Let \(\Omega \subset \mathbb{R}^d \) then \(\overline{\Omega} \) denotes the closure of \(\Omega \).

\[\overline{\Omega} = \bigcap_{\Omega \subset A, A \text{ is closed}} A \]

An example is that the closure of a ball is the ball with its boundary.

Let \(\Omega \) be a domain \(\equiv \) open, connected. \(C(\Omega) : \text{vector space of continuous functions } \Omega \to \mathbb{R} \).

If \(\Omega \) is bounded domain then \(C(\overline{\Omega}) \) is a Banach space with norm

\[||V||_{C(\overline{\Omega})} = \sup_{x \in \overline{\Omega}} |v(x)| = \max_{x \in \overline{\Omega}} |v(x)| \]

\(C^k(\Omega) : \text{space of } k\text{-times continuously differentiable functions on } \Omega : \text{then } D^\alpha v \text{ is continuous for all } |\alpha| \leq k. \)

\(C^k(\Omega) : \{ v \in C^k(\Omega) : D^\alpha v \in C(\overline{\Omega}), |\alpha| \leq k \}. \) This is a Banach space if we set

\[||v||_{C^k(\overline{\Omega})} = \sum_{|\alpha| \leq k} ||D^\alpha v||_{C(\overline{\Omega})}. \]

In 1D: \(\Omega = (0, 1) \):

\[||v||_{C^k(\Omega)} = \sup_{x \in [0,1]} |v(x)| + \sup_{x \in [0,1]} |v'(x)| + \sup_{x \in [0,1]} |v''(x)| \]

A function \(V : \Omega \to \mathbb{R} \) has compact support if \(v = 0 \) outside of a compact set (compact \(\iff \) bounded and closed in \(\mathbb{R}^d \))

\(C^k_0(\Omega) \) is the space of functions in \(C^k(\Omega) \) with compact support.

\(C^\infty_0(\Omega) : v \in C^k_0(\Omega) \) for every \(k. \)
4 Lecture 2017.11.07

Definition: Let $\Omega \subset \mathbb{R}^d$ be a domain. To begin with let, $1 \leq p < \infty$. A function $v \in L^p(\Omega)$ if $\int_{\Omega} |v(x)|^p dx < \infty$. We define $\|v\|_{L^p(\Omega)} = \left(\int_{\Omega} |v(x)|^p dx\right)^{1/p}$. Here follows a couple of notes regarding this definition.

Note 1: Here $\int_{\Omega} f(x) dx$ denotes the Lebesgue integral. It coincides with the Riemann integral for bounded Riemann integrable functions (at least on bounded Ω). For such functions the Lebesgue integral is an extension of the Riemann integral.

Note 2: There are many functions that are not Riemann integrable but are Lebesgue integrable.

Example: $\Omega = (0,1)$, consider the Dirichlet-function:

$$v(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ 0, & \text{if } x \text{ is irrational} \end{cases}$$

Note that v is very simple $v = \chi_{\mathbb{Q}\cap(0,1)}$. It’s easy to see that v is not Riemann integrable, however it is Lebesgue integrable and $\int_{\Omega} v(x) dx = 0$.

Note 3: The Lebesgue integral behaves much nicer than the Riemann integral if one wants to exchange limits and integrals.

Example: Suppose $f_n(x) \to f(x), f \in \Omega$. Then $|f_n(x)| \leq g(x), g(x) \in L^1(\Omega) \Rightarrow \int_{\Omega} f(x) dx = \lim_{n \to \infty} \int_{\Omega} f_n(x) dx$. This is called Lebesgue’s dominated convergence theorem.

Note 4: We consider two functions v and w equivalent, or we say that they are equal almost everywhere (a.e) if $v(x) = w(x)$ only for $x \in A$ where A has Lebesgue measure 0, defined as follows: Let $c = (a_1, b_1) \times \ldots \times (a_d, b_d) \subset \mathbb{R}^d$ be a hypercube in \mathbb{R}^d. The Lebesgue measure $m(c)$ of c is defined by $m(c) = \prod_{i=1}^d (b_i - a_i)$.

Definition: A set $A \subset \mathbb{R}^d$ has Lebesgue measure 0 if for every $\epsilon > 0$ there are countably many hypercubes c_n, $n = 1, 2, \ldots$ such that $A \subset \bigcup_{n=1}^\infty c_n$ and $\sum_{n=1}^\infty m(c_n) < \epsilon$. Note that if $A = \{a\}$ then $m(A) = 0$, if A is countable then $m(A) = 0$.

Example: Consider \mathbb{R}^2 then the real line $A = \{(x,0), x \in \mathbb{R}\}$ has Lebesgue measure 0 (a line has 0 "area"). In general if $\Omega \subset \mathbb{R}^d$ a domain, then the boundary Γ of Ω ($\Gamma = \partial \Omega \cap \Omega$) has Lebesgue measure 0. For example $\{(x,0), x \in \mathbb{R}\} = \Gamma$, $\Omega = \{(x,y): x \in \mathbb{R} y > 0\}$.

Note 5: If $v = w$ a.e, then if v is Lebesgue integrable then so is w and $\int_{\Omega} v dx = \int_{\Omega} w dx$.

Example: With the Dirichlet function from before $v \equiv 0$ a.e because $m(\mathbb{Q} \cap (0,1)) = 0$ thus v is Lebesgue integrable with Lebesgue integral 0.

Note 6: Elements of the space $L^p(\Omega)$ are equivalence classes of functions that are equal a.e. Therefore in general we cannot talk about point values of $v \in L^p(\Omega)$, that is $v(x)$ for fixed x (unless there is a continous representation in the equivalence class).

Note 7: $L^p(\Omega)$ is complete and hence a Banach space. $p = 2$, $L^2(\Omega)$ is a Hilbert space with inner product $(u,v) = \int_{\Omega} u v dx$ where this is the Lebesgue integral.

Note 8: Regarding $p = \infty$. We say that v is essentially bounded if there is a $M > 0$ such that $|v(x)| \leq M$ for almost all x.

$$\|v\|_{L^\infty} = \inf \{M : |v(x)| \leq M \text{ for almost all } x\} = \sup_{x \in \Omega} |v(x)|$$

L^∞ is a Banach space.
Example: $\Omega = (0, 1)$ and for $n = 1, 2, ...$

\[
\begin{cases}
1 & \text{if } x \neq \frac{1}{n} \\
0 & \text{if } x = \frac{1}{n}
\end{cases}
\]

Suppose $\sup_{x \in \Omega} |v(x)| = \infty$ but ess sup$_{x \in \Omega} |v(x)| = 1$.

Note 9: If the boundary Γ of Ω is smooth enough (say, Lipschitz continuous) then $C^0_0(\Omega)$ (also $C^\infty_0(\Omega)$) is dense in $L^p(\Omega)$, $1 \leq p < \infty$. That is for every $v \in L^p(\Omega)$ there are $(v_n) \subset C^0_0(\Omega)$ or $(v_n) \subset C^\infty_0(\Omega)$ such that $||v_n - v||_{L^p} \to 0$ as $n \to \infty$. This does not hold for L^∞.

Sobolev spaces: We need the concept of weak (or generalized or distributional) derivatives. We begin with a lemma.

Lemma: Suppose that V and W are Banach spaces and $A \subset V$ is a dense subspace of V (dense: $\forall v \in V \exists (v_n) \subset A: v_n \to v$). Suppose that $B: A \to W$ is a bounded linear operator. Then there is a unique linear continuous (≡ bounded) extension \tilde{B} of B to the whole of V such that $||\tilde{B}||_{B(V,W)} = ||B||_{B(A,W)}$.

Let $\Omega \subset \mathbb{R}^d$ be a domain. Let $v \in C^1(\overline{\Omega})$. Let $\Phi \in C^1_0(\Omega)$. Integrate by parts:

\[
(*) = \int_{\Omega} \frac{\partial v}{\partial x_i} \Phi \, dx = - \int_{\Omega} v \frac{\partial \Phi}{\partial x_i} \, dx
\]

This is a special case of Greens formula (see introduction of the book) $w = (w_1, ..., w_d)$ vector field, ψ scalar field then

\[
\int_{\Omega} w \cdot \nabla \psi \, dx = \int_{\Gamma} w \cdot n \psi \, dx - \int_{\Omega} \nabla w \psi \, dx
\]

n is the outward facing unit normal of Γ.

If $v \in L^2(\Omega)$ it might not have a classical derivative. One can define the generalized (weak) derivative denoted by $\frac{\partial v}{\partial x_i}$ to be a functional with the following properties:

Definition: The weak derivative is defined as

\[
\frac{\partial v}{\partial x_i}(\Phi) = L(\Phi) = - \int_{\Omega} v \frac{\partial \Phi}{\partial x_i} \, dx, \; \Phi \in C^1_0(\Omega)
\]

Suppose that L is bounded that is there is a $M > 0$ such that $|L(\Phi)| \leq M ||\Phi||_{L^2} \forall \Phi \in C^1_0(\Omega)$. Then by the lemma there is a continuous linear extension of L to the whole of L^2 (because C^1_0 is dense in L^2). By Riesz representation theorem there is an unique $w \in L^2$ such that $L(\Phi) = (\Phi, w)$ $\Phi \in L^2$. Therefore in this case

\[
\int_{\Omega} v \frac{\partial \Phi}{\partial x_i} \, dx = L(\Phi) = \int_{\Omega} \Phi w \, dx \forall \Phi \in C^1_0(\Omega)
\]

In this case we say that $\frac{\partial v}{\partial x_i}$ is in L^2. We still denote w by $\frac{\partial v}{\partial x_i}$. With this notation

\[
(**) = - \int_{\Omega} v \frac{\partial \Phi}{\partial x_i} \, dx = \int_{\Omega} \Phi \frac{\partial v}{\partial x_i} \, dx \forall \Phi \in C^1_0(\Omega)
\]

Comparing $(*)$ with $(**)$ we say that for $v \in C^1_0(\overline{\Omega})$ the weak derivative coincides with the classical derivative. Note: weak derivative allows for integration by parts in the appropriate way.
Let α be a multiindex and $v \in L^2(\Omega)$. Define $D^\alpha v$ as a functional:

$$(D^\alpha v)(\Phi) = L(\Phi) = (-1)^{|\alpha|} \int_\Omega v D^\alpha \Phi dx, \quad \Phi \in C_0^{[\alpha]}(\Omega)$$

If $|L(\Phi)| \leq ||\Phi||_{L^2}$ then since $\Phi \in C_0^{[\alpha]}(\Omega)$ is dense, there is a unique continuous extension of L to the whole of L^2. By the Riesz representation theorem there is $w \in L^2$ which we denote by $D^\alpha v$ such that $(w, \phi) = (D^\alpha v, \Phi) = L(\Phi) = (-1)^{|\alpha|} \int_\Omega v D^\alpha \Phi dx = (-1)^{|\alpha|}(v, D^\alpha \Phi)$, $\forall \Phi \in C_0^{[\alpha]}(\Omega)$.

Definition: The Sobolev space $H^k(\Omega)$ is defined by:

$$H^k(\Omega) = \{v \in L^2(\Omega) : D^\alpha v \in L^2(\Omega) \mid |\alpha| \leq k\}$$

We endow H^k with the inner product

$$(u, v)_{H^k} = \sum_{|\alpha| \leq k} \int_\Omega D^\alpha u D^\alpha v dx$$

and with the norm:

$$||u||_{H^k} = ||u||_k = \left(\sum_{|\alpha| \leq k} \int_\Omega (D^\alpha u)^2 dx \right)^{1/2}$$

Note: For H^0 we have $||v||_0 = ||v||_{H^0} = ||v||_{L^2} = ||v||$. For H^1 we have:

$$||v||_1 = \left(\int_\Omega v^2 + \sum_{j=1}^d \left(\frac{\partial v}{\partial x_j} \right)^2 dx \right)^{1/2}$$

and for H^2 we have:

$$||v||_2 = \left(\int_\Omega v^2 + \sum_{j=1}^d \left(\frac{\partial v}{\partial x_j} \right)^2 + \sum_{j=1}^d \sum_{k=1}^d \left(\frac{\partial^2 v}{\partial x_j \partial x_k} \right) dx \right)^{1/2}$$

note that the H^2 norm contains all the mixed second order derivatives not just the Laplacian!

We continue by listing two important properties of the Sobolev spaces.

Property 1: H^k is a Hilbert space

Property 2: $C^l(\overline{\Omega})$ is a dense subspace of $H^k(\Omega)$ for $l \geq k$, this holds if $\Gamma = \partial \Omega$ is smooth enough.

Definition: The seminorm $|\cdot|_k$ is defined by:

$$|v|_k = \left(\sum_{|\alpha| = k} \int_\Omega (D^\alpha v)^2 dx \right)^{1/2}$$

This is not a norm, for example $|v|_k = 0$ for v constant. Still the triangle inequality holds and $|\lambda v|_k = |v|_k$.

Definition: We define the trace. This is the generalization of the boundary value of a function. If $v \in C^k(\overline{\Omega})$ then we may define the boundary value γv of v by restricting v to $\Gamma : (\gamma v)(x) = v(x) \ x \in \Gamma$. Then γv is a continuous function on Γ. We would like to extend this concept to $v \in H^1$. 12.
Problem: Γ has the Lebesgue measure 0 in \mathbb{R}^d. As functions in H^1 are only defined as L^2 functions the point values on Γ are not well defined.

Idea: We define the boundary space $L^2(\Gamma)$ as the space of functions on Γ such that the surface integral $\int_\Gamma v^2\,ds < \infty$, with the norm $||v||_{L^2(\Gamma)} = \left(\int_\Gamma v^2\,ds\right)^{1/2}$. We will first define the boundary value of a function $v \in C^1(\Omega) \subset H^1$ by restriction of v to the boundary and we try to extend this notion to the whole of H^1 using the denseness of $C^1(\Omega)$ in H^1.

Lemma: Let $\Omega = (0,1)$. Then there is a constant $c > 0$ such that $|v(x)| \leq C||v||_1$ for all $c \in C^1(\overline{\Omega})$ and $x \in \overline{\Omega}$ (in particular we may take $x = 0, 1$).

Proof: For $x, y \in \Omega$ and $v \in C^1(\Omega)$ we have $v(x) = v(y) + \int_y^x v'(s)\,ds$ (this is nothing but usage of the fundamental theorem of integral calculus). Then we use the triangle inequality, the triangle inequality for integrals and Cauchy-Schwarz

$$|v(x)| \leq |v(y)| + \int_y^x |v'(s)|\,ds \leq |v(y)| + \int_y^x 1 \cdot |v'(s)|\,ds \leq |v(y)| + \left(\int_0^1 1^2\,ds\right)^{1/2} \left(\int_0^1 |v'(s)|^2\,ds\right)^{1/2}$$

The limits of integration can change from x, y to 0, 1 since the absolute value makes the integral grow when the interval grows, thus it is fine to make enlarge our limits to the whole of Ω in our inequality. Then we use $(a + b)^2 \leq 2a^2 + 2b^2$:

$$|v(x)|^2 \leq 2\left(|v(y)|^2 + \int_0^1 |v'(s)|^2\,ds\right)$$

Since the righthand side is independent of y and the second term on the lefthand side is independent of y we can take the integral with respect to y on both sides (since the length of our integral is 1 these objects integrate like multiplication with 1) and acquire

$$|v(x)|^2 \leq 2\left(||v||_{L^2}^2 + ||v'||_{L^2}^2\right) = 2||v||_1^2$$

By continuity this result holds for $x \in \overline{\Omega}$. We have $|v(1)| = \lim_{x_n \to x} |v(x)|$ and $x_n \to x$, $|x_n| \leq m \Rightarrow |x| \leq m$. This concludes the proof.

Theorem: (Trace theorem) Let $\Omega \subset \mathbb{R}^d$ be a bounded domain. Suppose that $\Gamma = \partial\Omega$ is a polygon or smooth. We define the trace operator γ by $\gamma : C^1(\overline{\Omega}) \subset H^1(\Omega) \to C^1(\Gamma) \subset L^2(\Gamma)$ $(\partial v)(x) = v(x)$ $x \in \Gamma$. Then there is a bounded linear extension of γ to the whole of $H^1(\Omega)$ still denoted by γ. In particular there is a $c > 0$ such that $||\gamma v||_{L^2(\Gamma)} \leq c||v||_{H^1(\Omega)} \forall v \in H^1(\Omega)$.

Note: In this setting the "boundary value" of a function in $H^1(\Omega)$ only exists as a function on $L^2(\Gamma)$.

Proof: γ is clearly linear. By homework problem 2.5 we only need to show that $||\gamma v||_{L^2(\Gamma)} \leq c||v||_{H^1}$ $v \in C^1(\overline{\Omega})$ as $C^1(\overline{\Omega})$ is dense in $H^1(\Omega)$. We will prove this for $(0,1) \times (0,1)$ We will only consider one side of the rectangle, the same reasoning as follows holds for the other three. Let $(x_1, x_2) \in \Omega$ we use the lemma applied to the function $x \to v(x_1, x_2)$ and $x_1 = 0$ (right side of the rectangle).

$$v(0, x_2)^2 \leq 2\left(\int_0^1 v(x_1, x_2)^2\,dx_1 + \int_0^1 \left(\frac{\partial v(x_1, x_2)}{\partial x_1}\right)^2\,dx_1\right)$$

$$\int_0^1 v(0, x_2)^2\,dx_2 \leq 2\left(\int_0^1 \int_0^1 v(x_1, x_2)^2\,dx_1\,dx_2 + \int_0^1 \int_0^1 \left(\frac{\partial v(x_1, x_2)}{\partial x_1}\right)^2\,dx_1\,dx_2\right) \leq 2\left(||v||_{L^2(\Omega)}^2 + ||\nabla v||_{L^2(\Omega)}^2\right)$$

This implies that $||v||_{L^2(\Gamma)} \leq 2||v||_1^2$

Definition: We saw that the trace operator $\gamma : H^1(\Omega) \to L^2(\Gamma)$ is bounded and therefore it’s nullspace (kernel) is a closed subspace of H^1_0. We define H^1_0:

$$H^1_0(\Omega) = \{v \in H^1(\Omega) | \gamma v = 0\}$$
It is a closed subspace of H^1 these are all the functions in H^1 that vanish on the boundary Γ in the trace sense.

Homework: $T : V \rightarrow W$, where V and W are normed spaces, is bounded. Show that $\ker(T) = \{ v \in V : Tv = 0 \}$ is a closed subspace of V.

Homework solution:
6 Lecture 2017.11.13

Theorem: (Poincaré inequality) Let $\Omega \subset \mathbb{R}^d$ be a bounded domain. Then there is a constant C such that $||v||_{L^2} \leq C||\nabla v||_{L^2}$ for all $v \in H^1_0(\Omega)$. It is important that $v \in H^1_0$ (zero on boundary).

Proof: Fact: C^1_0 is dense in H^1_0 therefore it is enough to prove that $||v||_{L^2} \leq C||\nabla v||_{L^2}$ for all $v \in C_0^1(\Omega)$. Indeed: $v \in H^1_0$, $v_n \in C_0^1$ and $v_n \to v$ in H^1-norm $v_n \to v$ in L^2, $\nabla v_n \to \nabla v$ in L^2 imply:

$||v_n||_{L^2} \leq C||\nabla v_n||_{L^2} \to ||v||_{L^2} \leq ||\nabla v||_{L^2}$ as $n \to \infty$

as $|| \cdot ||_{L^2}$ is continuous. We will prove this for $\Omega = (0, 1) \times (0, 1)$. Let $v \in C^1_0(\Omega)$ $x \in (x_1, x_2) \in \Omega$. Then:

$v(x_1, x_2) - v(0, x_2) = \int_0^{x_1} \frac{\partial v}{\partial x_1}(s, x_2)ds$

This is simply the fundamental theorem of calculus. The second term on the righthand side is 0 because of compact support. We now use Cauchy-Schwarz, our second factor is the invisible 1 in front of our derivative of v:

$v(x_1, x_2)^2 \leq \int_0^{x_1} 1^2 ds \cdot \int_0^{x_1} \left(\frac{\partial v}{\partial x_1}(s, x_2)\right)^2 ds \leq \int_0^1 \left(\frac{\partial v}{\partial x_1}(s, x_2)\right)^2 ds$.

Here the last inequality follows from $x_1 \leq 1$, since we have a squared real valued function the integral can only get bigger if we extend our integration limits. We now integrate the above inequality over all of Ω:

$\int_0^1 \int_0^1 v(x_1, x_2)^2 dx_1 dx_2 \leq \int_0^1 \int_0^1 \left(\frac{\partial v}{\partial x_1}(s, x_2)\right)^2 ds dx_2$.

The integral over x_1 on the righthand side evaluates to 1 since the righthand side doesn’t depend on x_1. The righthand side definitely is smaller than the norm of the gradient squared, if we add more derivative terms we will end up with something larger. Thus we have:

$\int_0^1 \int_0^1 v(x_1, x_2)^2 dx_1 dx_2 \leq \int_0^1 \int_0^1 \left(\frac{\partial v}{\partial x_1}(s, x_2)\right)^2 ds dx_2 \leq ||\nabla v||_{L^2}^2$,

which we wanted to show. \hfill \Box

Corollary: If $v \in H^1_0$ then:

$|v|^2 = ||\nabla v||_{L^2}^2 \leq ||v||_{L^2}^2 + ||\nabla v||_{L^2}^2$ (as $||v||_{L^2}^2 \leq C||\nabla v||_{L^2}^2$)

Therefore on H^1_0 $| \cdot |_{L^2}$ and $|| \cdot ||_{L^2}$ are equivalent and thus $| \cdot |_{L^2}$ is a norm on H^1_0 not just a seminorm.

Definition: The dual space $(H^1_0)^*$ is denoted by H^{-1}. That is H^{-1} is the space of bounded linear functionals on H^1_0. If we equip H^1_0 with $| \cdot |_{L^2}$ then the norm on H^{-1} is given by

$||L||_{H^{-1}} = \sup_{v \in H^1_0} \frac{|L(v)|}{|v|_{L^2}}$.

Boundary value problems: We will consider a general second order elliptic problem of the form (which we will refer to as BVP):

$L u = -\nabla \cdot (a \nabla u) + b \cdot \nabla u + cu = f$

where $f \in \Omega \subset \mathbb{R}^d$ and $u = 0$ on Γ. a, b and c are smooth functions (b vectorfield) and f is continuous.

Definition: A function u is a classical solution of the boundary value problem if $u \in C^2(\overline{\Omega})$ and u satisfies BVP.
Note: In applications one would like to consider more general \(f \), say \(f \in L^2 \). We need a more general solution concept, weak or variational formulation of BVP.

Suppose that \(u \in C^2(\Omega) \) is a classical solution. We take \(v \in C^0_0(\Omega) \) multiply both sides of the equation BVP by \(v \) and integrate over \(\Omega \) (note: integration by parts):

\[
\int_\Omega f v = \int_\Omega Lu v = \int_\Omega -\nabla \cdot (a \nabla u) v + b \nabla u v + c uv dx = -\int_\Gamma a \nabla u v n + \int_\Omega a \nabla u \nabla v + b \nabla u v + c uv dx.
\]

The integral over \(\Gamma \) is 0 since \(v \in C^0_0 \). Thus we have we have:

\[
\int_\Omega a \nabla u \cdot \nabla v + b \cdot \nabla u v + c uv dx = \int_\Omega f v dx \quad \forall v \in C^0_0(\Omega)
\]

Claim: This holds for all \(v \in H^1_0(\Omega) \). \(v \in H^1_0 \), \((v_n) \in C^0_0 \) such that \(v_n \to v \) in \(L^2 \) and \(\nabla v_n \to \nabla v \) in \(L^2 \). Thus our equation can be extended to \(H^1_0 \) by taking the limit \(n \to \infty \), we also note that our integral is a sum of inner products in \(L^2 \):

\[
(a \nabla u, v_n) + (b \cdot \nabla u, v_n) + (cu, v_n) = (f, v_n) \to (a \nabla u, v) + (b \cdot \nabla u, v) + (cu, v) = (f, v).
\]

Definition: (Weak/Variational solution of BVP) Find \(u \in H^1_0 \) such that

\[
\int_\Omega a \nabla u \cdot \nabla v + b \cdot \nabla u v + c uv dx = \int_\Omega f v dx, \forall v \in H^1_0.
\]

Terminology: Such a function \(u \) is called a weak or variational solution of BVP. Note: The above calculation shows that a classical solution is weak solution. Conversely: If \(u \) is a weak solution and \(u \in C^2(\Omega) \) then \(u \) is a classical solution. Reversing the above calculation we find that

\[
\int_\Omega f v dx = \int_\Omega Lu v = \int_\Omega \forall v \in C^0_0
\]

or

\[
\int_\Omega (Lu - f) v dx = 0 \forall v \in C^0_0.
\]

\((Lu - f, v) = 0 \forall v \in C^0_0 \). As \(C^0_0 \) is dense in \(L^2 \) we conclude that \(Lu - f \equiv 0 \) in \(L^2 \) that is \(Lu - f = 0 \) a.e. If \(u \in C^2(\Omega) \) and \(f \in C(\Omega) \Rightarrow Lu - f \in C(\Omega) \Rightarrow Lu(x) - f(x) = 0 \) for all \(x \in \Omega \).

(If \(g \) is continuous on \(\Omega \) and \(g = 0 \) a.e then \(g = 0 \) \(\forall x \in \Omega \) Finally as \(u \in H^1_0 \cap C^2(\Omega) \), we have \((\gamma u)(x) = u(x), \forall x \in \Gamma \Rightarrow u = 0 \) on \(\Gamma \) thus \(u \) is a classical solution.

Note: A weak solution is often not regular enough to be a classical solution (e.g \(f \in L^2, \Omega \) has corners etc.).

Theorem: Suppose that \(a, b \) and \(c \) are smooth functions in \(\Omega \) and that \(a(x) \geq a_0 > 0 \) and that \(c(x) - \frac{1}{2} \nabla \cdot b \geq 0 \) for all \(x \in \Omega \) and \(f \in L^2 \). Then there is a unique weak solution \(u \) of BVP. That is, there is a unique \(u \in H^1_0 \) such that

\[
\int_\Omega a \nabla u \cdot \nabla v + b \cdot \nabla u v + c uv dx = \int_\Omega f v dx \forall v \in H^1_0
\]

Furthermore there is a constant \(c > 0 \) independent of \(f \) such that \(|u|_1 \leq c ||f||_{L^2} \).

Proof: We will use the Lax-Milgram Lemma on \(V = H^1_0 \) with norm \(| \cdot |_1 \), bilinear form

\[
a(w, v) = \int_\Omega a \nabla w \cdot \nabla v + b \cdot \nabla u v + c uv dx, w, v \in H^1_0 = V
\]

and linear functional \(L(v) = \int_\Omega f v dx \). We need to check that \(a \) is bilinear bounded and coercive, we also need to check that \(L : V \to \mathbb{R} \) is bounded.
To begin with we will need some inequalities they are

\[\|f \cdot g\|_{L^2} \leq \|f\|_{L^\infty} \cdot \|g\|_{L^2} \]

If \(F = (f_1, \ldots, f_d) \) \(G = (g_1, \ldots, g_d) \)

\[\left| \int_{\Omega} F \cdot G dx \right| \leq \|F\|_{L^2} \cdot \|G\|_{L^2} \]

where \(\|F\|_{L^2} = \int_{\Omega} \sum_{j=1}^{d} f_j^2 dx \)

\[\|F \cdot G\|_{L^2} \leq \max_{1 \leq i \leq d} \|f_i\|_{L^\infty} \|G\|_{L^2} \]

\[\|f F\|_{L^2} \leq \|f\|_{L^\infty} \|F\|_{L^2} . \]

The proof continues in the next lecture.
7 Lecture 2017.11.14

Proof: We will use Lax-Milgram Lemma: If V is a Hilbert space, $a: V \times V \to \mathbb{R}$ is a bounded coercive bilinear form on V and $L: V \to \mathbb{R}$ is a bounded linear functional on V then there is a unique $u \in V$ such that $a(u, v) = L(v) \quad \forall v \in V$ and $\|u\|_V \leq c\|L\|_{V^*} = \sup_{v \in V} \frac{|L(v)|}{\|v\|_V}$.

Let $V = H^1_0$ with norm $\| \cdot \|_1$, define

$$a(w, v) = \int_\Omega a \nabla w \cdot \nabla v + b \cdot \nabla w v + cwv dx \quad v, w \in H^1_0 = V$$

and define

$$L(v) = \int_\Omega f v dx \quad v \in H^1_0.$$

As stated we need to show: a is (1) bilinear, (2) bounded and (3) coercive, we also have to check if (4) L is bounded. It is easy to see that a is bilinear, that takes care of criterion (1). We now show that a is bounded, that is $|a(w, v)| \leq K|w|_1|v|_1$:

$$|a(w, v)| \leq \left| \int_\Omega a \nabla w \cdot \nabla v dx \right| + \left| \int_\Omega b \cdot \nabla w v dx \right| + \left| \int cwv dx \right| \leq C \|w\|_2 \|v\|_2 + |b| \|\nabla w\|_2 \|v\|_2 + |c| \|w\|_2 \|v\|_2$$

Poincaré

$$|a(v)| \leq \|a\|_{L^\infty} \|\nabla w\|_{L^p} \|v\|_{L^p} + (\max_{1 \leq i \leq d} |b_i|) \|\nabla w\|_{L^2} \|v\|_{L^2} + |c| \|w\|_{L^2} \|v\|_{L^2}$$

Note that we have used the definition of the seminorm here

$$K = 3 \max \left\{ |a|_{L^\infty} + M \left(\max_{1 \leq i \leq d} |b_i| \|v\|_{L^\infty} \right), M^2 |c|_{L^\infty} \|v\|_{L^1} \right\}.$$

We have now shown the boundedness of a. We now show coercivity that is $|a(v, v)| \geq \alpha \|v\|_V^2$.

$$a(v, v) = \int_\Omega a |\nabla v|^2 + b \cdot \nabla v + c v^2 dx = \int_\Omega a |\nabla v|^2 + \frac{1}{2} \nabla b v^2 + c v^2 dx$$

Note: $\nabla \cdot (bv) = \nabla v \cdot b + b \cdot \nabla (v^2)$. Also since v is zero on Γ since $v \in H^1_0$ the divergence theorem gives us that

$$\int_\Omega \nabla \cdot (bv) dx = \int_{\gamma} b \cdot n v^2 ds = 0 \Rightarrow \int_\Omega b \cdot \nabla (v^2) dx = - \int_\Omega v^2 \nabla \cdot b dx.$$

Thus we have that

$$a(v, v) = \int_\Omega a |\nabla v|^2 + \frac{1}{2} \nabla v \cdot b + c v^2 dx = \int_\Omega a |\nabla v|^2 + (c - \frac{1}{2} \nabla \cdot b) v^2 dx$$

$$\geq \int_\Omega a |\nabla v|^2 dx \geq a_0 \int_\Omega |\nabla v|^2 dx = a_0 |v|^2_1,$$

(here we used that $c - \frac{1}{2} \nabla \cdot b \geq 0$) this means a is coercive. Finally, we need to show that L is bounded, that is show $\exists C > 0 : |L(v)| \leq C\|v\|_V$. We have

$$|L(v)| = |(v, f)| \leq \|v\| \|f\| \leq C\|f\| \|v\|_1$$

$$\Rightarrow \|L\|_{V^*} \leq \sup_{v \in V} \frac{|L(v)|}{\|v\|_1} \leq C\|f\|. $$
Which shows that L is bounded. Now by the Lax-Milgram lemma there is a unique $w \in V = H^1_0$ such that $a(w,v) = L(v) \forall v \in V = H^1_0$ and $|w|_1 = ||w||_V \leq C||L||_V \leq K||f||$.

When $b = 0$ the bilinear form a is symmetric, then the unique weak solution can be characterized as the minimizer of the energy functional $F(v) = \frac{1}{2}a(v,v) - L(v)$.

Theorem: (Dirichlet’s principle) Suppose that $b = 0$, a, c are smooth in $\bar{\Omega}$ and $a(x) > a_0 > 0$ $c(x) > 0$ $x \in \Omega$ then the unique solution of BVP satisfies $F(u) \leq F(v) \forall v \in H^1_0$ where

$$F(v) = \frac{1}{2} \int_{\Omega} a|\nabla v|^2 dv - \int_{\Omega} fvdx$$

with equality only if $v = u$.

Proof: Theorem A.2 (in the book) shows that $F(u) \leq F(v) \forall v \in V = H^1_0$ as u is a weak solution. If $w \in H^1_0$ such that $F(w) \leq F(v)$ for all $v \in H^1_0$ then by theorem A.2, w is a weak solution. By uniqueness $u = w$.

Inhomogeneous BVP: Classical formulation: $u \in C^2$ such that $Lu = f$ in Ω, $u = g$ on Γ where f and g are given continuous functions.

We would like to consider this problem when $f \in L^2(\Omega)$, $g \in L^2(\Gamma)$. Weak formulation: Find $u \in H^1$ such that $a(u,v) = L(v)$ for all $v \in H^1_0$ $\gamma u = g$ where $\gamma^1_H \rightarrow L^2(\Gamma)$ is the trace operator

$$a(u,v) = \int_{\Omega} a\nabla u \cdot \nabla v + b \cdot \nabla uv + cuvdx,$$

$$L(v) = \int_{\Omega} fvdx.$$

Call this problem BVP1.

Theorem: Suppose that there is an $u_0 \in H^1$ such that $\gamma u_0 = g$. If a, b, c are smooth, $a(x) \geq a_0 > 0$, $c(x) - \frac{1}{4} \nabla b(x) \geq 0$ for all $x \in \Omega$, $f \in L^2(\Omega)$, $g \in L^2(\Gamma)$ then there is a unique weak solution of BVP1.

Proof: We look at the problem: find $w \in H^1_0$ such that $a(w,v) = L(v) - a(w,v) \forall v \in H^1_0$. As $a : H^1_0 \times H^1_0 \rightarrow \mathbb{R}$ is bounded and coercive (like before), L is bounded, and $V \rightarrow a(u_0,v)$ is also bounded on H^1_0. We have that

$$|a(u_0,v)| \leq K||u_0||_1||v||_1.$$

By Lax-Milgram there is a unique $w \in H^1_0$ such that $a(w,v) = L(v) - a(u_0,v) \forall v \in H^1_0$. Then $u := w + u_0$ is a weak solution of BVP1.

$$a(u,v) = a(w,v) + a(u_0,v) = L(v) - a(u_0,v) + a(u_0,v) = L(v).$$

Also

$$\gamma u = \gamma w + \gamma u_0 = 0 + g = g,$$

hence u is a weak solution of BVP1. Uniqueness: Suppose that w_1 and w_2 are weak solutions of BVP1. Let $u = w_1 - w_2$,

$$a(u,v) = a(w_1,v) - a(w_2,v) = L(v) - L(v) = 0 \forall v \in H^1_0.$$

$$\gamma u = \gamma w_1 - \gamma w_2 = g - g = 0,$$

hence $u \in H^1_0$. Furthermore u solves $a(u,v) = 0$ for all $v \in H^1_0$. But this has a unique solution which has to be u, which that satisfies $|u|_1 < ||f|| = c||0|| = 0 \Rightarrow u = 0$ in $H^1 \Rightarrow w_1 = w_2$.

19.
Neumann problem: We consider the classical formulation: Find \(u \in C^2(\Omega) \) such that
\[Au = -\nabla \cdot (a \nabla u) + cu = f \] in \(\Omega \), \(\frac{\partial u}{\partial n} = 0 \) on \(\Gamma \), where \(\frac{\partial u}{\partial n} = n \cdot \nabla u \) where \(n \) is the unit normal of \(\Gamma \). Let \(u \in C^2(\Omega) \) be a classical solution and \(v \in C^1(\Omega) \) then
\[
\int_{\Omega} vf\,dx = \int_{\Omega} Auv\,dx = \int_{\Omega} -\nabla \cdot (a \nabla u) + cu\,dx = - \int_{\Gamma} a\nabla u \cdot nv\,ds + \int_{\Omega} a\nabla u \cdot \nabla v + cuv\,dx = \int_{\Omega} a\nabla u \cdot \nabla v + cuv\,dx \forall v \in C^1(\Omega).
\]
Here we used that the normal derivative is 0. By limit argument using that \(C^1(\Omega) \) is dense in \(H^1(\Omega) \) we set
\[
\int_{\Omega} a\nabla u \cdot \nabla v + cuv\,dx = \int_{\Omega} f\,dx \forall v \in H^1.
\]
8 Lecture 2017.11.17

Neumann problem continued (Weak formulation): Find \(u \in H^1(\Omega) \) such that

\[
\int_{\Omega} a \nabla u \cdot \nabla v + cuv \, dx \quad \forall v \in H^1(\Omega),
\]

if \(u \) is a weak solution and \(u \in C^1 \), then \(u \) is a classical solution. Indeed: reversing the steps before we get

\[
\int_{\Omega} f v \, dx = \int_{\Omega} -\nabla \cdot (a \nabla u) v + cuv \, dx + \int_{\Gamma} a \frac{\partial u}{\partial n} v \, ds \quad \forall v \in H^1.
\]

Let first \(v \in C^1_0 \subset H^1 \Rightarrow \int_{\Omega} f v \, dx = \int_{\Omega} -\nabla \cdot (a \nabla u) v + cuv \, dx \quad \forall v \in C^1_0 \Rightarrow \int(\mathcal{L} u - f) v \, dx = 0 \quad \forall v \in C^1_0.
\]

Since \(C^1_0 \) is dense in \(L^2 \), we get \(\mathcal{L} u = f \) a.e. If \(u \in C^2(\overline{\Omega}), f \in C(\overline{\Omega}) \Rightarrow \mathcal{L} u(x) = f(x) \) in \(\Omega \Rightarrow \int_{\Gamma} a \frac{\partial u}{\partial n} v \, ds = 0 \quad \forall v \in H^1 \Rightarrow \frac{\partial u}{\partial n} = 0 \) on \(\Gamma \).

Theorem: Let \(a, b, c \) be smooth in \(\overline{\Omega} \), \(a(x) \geq a_0 > 0 \quad \forall x \in \Omega, c(x) \geq c_0 > 0 \) and \(f \in L^2 \). Then the Neumann boundary value problem has a unique weak solution.

Proof: Let

\[
a(w, v) = \int_{\Omega} a \nabla w \nabla v + cvw \, dx, \quad v, w \in H^1
\]

and let

\[
L(v) = \int_{\Omega} f v \, dx \quad v \in H^1.
\]

To Show: There is a unique \(u \in H^1 : a(u, v) = L(v) \forall v \in H^1 \). To show: \(a \) is bounded and coercive (\(a \) is clearly symmetric and bilinear!).

Bounded:

\[
|a(w, v)| \leq \int_{\Omega} a \nabla w \cdot \nabla v \, dx + \int_{\Omega} cvw \, dx \leq ||a||_{L^\infty} ||\nabla w||_L ||\nabla v||_L + ||c||_{L^\infty} ||v||_L \leq ||a||_{L^\infty} ||\nabla w||_L ||\nabla v||_L + ||c||_{L^\infty} ||v||_L \leq k ||w||_1 ||v||_1,
\]

and

\[
||a||_{L^\infty} (||w|| + ||\nabla w||) (||c|| + ||\nabla v||) + ||c||_{L^\infty} (||w|| + ||\nabla w||) (||v|| + ||\nabla v||) = k ||w||_1 ||v||_1,
\]

and where \(k = ||a||_{L^\infty} + ||c||_{L^\infty} \).

Coercive:

By the Riesz representation theorem (or more generally by Lax-Milgram)

\[
\exists u \in H^1 : a(u, v) = L(v) \forall v \in H^1
\]