Linjar Alg.
Fö.
25 kr
Linjär algebras

1. \((x, y) \) fyller i planet \(x \) och \(y \).
2. Linje i planet \(x \) och \(y \), ekvationen för en linje i planet:
 \[ax + by + c = 0 \]

 \(\begin{align*}
 \text{Pel} & \iff ax + by + c = 0 \\
 \text{Linjerna} & \iff l_1 : a_1 x + b_1 y + c_1 = 0 \quad \text{och} \quad l_2 : a_2 x + b_2 y + c_2 = 0
 \end{align*} \)

 Finns det en plats vars koordinater
 \[x = k \]
 \[y = l \]

 Om det finns ett

 \[\begin{align*}
 x & = k \\
 y & = l
 \end{align*} \]

 \[\text{Linjära ekvationssystemen} \]

 \[\begin{align*}
 a_1 x + b_1 y + c_1 & = 0 \\
 a_2 x + b_2 y + c_2 & = 0
 \end{align*} \]

 \[\begin{align*}
 x & = k \\
 y & = l
 \end{align*} \]

 \[\text{Om } m=n, \text{ så är LES kvadratisk.} \]

 \[\text{Hypotes: } nuk, \text{ en eller oändligt många lösningar?} \]

 \[\text{Gauss Elliminering method} \]

 Törvändningar:
 \[m=n \text{ entydig lösning} \]
 \[m<n \text{ oändligt många} \]
 \[m>n \text{ ingen lösning} \]

 \[\text{Vilka LES ser vi helst? } \]

 \[\begin{align*}
 \begin{bmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 a_{21} & a_{22} & \cdots & a_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{m1} & a_{m2} & \cdots & a_{mn}
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 x_2 \\
 \vdots \\
 x_n
 \end{bmatrix} & = \begin{bmatrix}
 b_1 \\
 b_2 \\
 \vdots \\
 b_m
 \end{bmatrix}
 \end{align*} \]

 \[\text{Diagonala LES} \]

\[
\begin{aligned}
\{ & a_{n}x_{1} + a_{n}x_{2} + \ldots + a_{n}x_{n} = b_{1} \\
& a_{n}x_{1} + a_{n}x_{2} + \ldots + a_{n}x_{n} = b_{2} \\
& \ldots \\
& a_{n}x_{n} = b_{n} \\
\} \\
\text{Triangular trappstegsform}
\end{aligned}
\]

Lösning:

\[
\begin{aligned}
& x_{1} = c \\
& x_{2} = c_{2} \\
& \ldots \\
& x_{n} = c_{n}
\end{aligned}
\]

Metoder: Bygger på en algoritm som gör att man från det ursprungliga systemet kommer till lösningen via ekvationssystem. Samt är ekivalenta med de givna i bemärkelsen att de har samma lösningsskalet.

Elementara operationer för system - Ekvationen

Ekvationssystem användas i ekvalenat ekvationssystem, vid följande operationer:

1. Man låter två ekvationer byta plats
2. Man multiplicerar en ekvation med konstant ≠ 0
3. Man adderar till en ekvation en annan ekvation multiplicerad med konstant.

Elementara ekvationssystem (gäller även i elektroteknik) 3

For LES ekvationer y-z räcker för att lösa systemet.

\[
\begin{aligned}
& x + 2y + z = 1 \\
& 2x + y + z = 0 \\
& -x - y + 2z = 3
\end{aligned}
\]

\[
\begin{aligned}
& x - 2y + z = 1 \\
& 5y - z = -2 \cdot 8 \\
& -3y + 3z = 4 \cdot 5
\end{aligned}
\]

\[
\begin{aligned}
& \Rightarrow \begin{cases}
& x - 2y + z = 1 \\
& 15y - 5z = -6 \\
& -15y + 15z = -20 \end{cases} \\
& \Rightarrow \begin{cases}
& x - 2y + z = 1 \\
& 15y - 5z = -6 \\
& 15z = 10 \end{cases}
\end{aligned}
\]

\[
\begin{aligned}
& x = 1 + 2y - z = \frac{6 - 2 - 7}{6} = -\frac{1}{6} - \frac{1}{2} \\
& z = \frac{7}{6}
\end{aligned}
\]

Har ingen lösning

\[
\begin{aligned}
& l x + m y + n z = k \\
& 0x + 0y + 0z = (b ≠ 0)
\end{aligned}
\]

\[
\begin{aligned}
& x + y + z = 1 \\
& -x - y - z = 0 \Rightarrow \begin{cases}
& x + y + z = 1 \\
& x + y + z = 1
\end{cases}
\end{aligned}
\]

\[
\begin{aligned}
& \Rightarrow \begin{cases}
& x + y + z = 1 \\
& x = 1 - s - t \end{cases}
\end{aligned}
\]

\[
\begin{aligned}
& z = s, t \in \mathbb{R}
\end{aligned}
\]
Ekvationssystem har alltid en endig lösning.

Om $a = 3$
\[
\begin{cases}
3x + y - z = 2 \\
y + 2z = 5 \\
0 = 0
\end{cases}
\]

En fri variabel

\[z = t, y = 5 - 2t, x = \ldots\]

Om $a \neq 3$
\[
\begin{cases}
0 = a + 3a = 0 \\
\text{Om sålunda inga lösningar}
\end{cases}
\]

Matematisk modell

Vi introducerar (geometriska) vektorer.

Def: En räkning sträcka bestäms av:

1. en storlek
2. en riktning
3. en fotpunkt

Def: En vektor \vec{u} (a) bestäms av:

1. en storlek
2. en riktning

En vektor \vec{u} representerar av varje räkning sträcka med samma riktning och storlek.

Om \vec{AB} är en sträcka, så skriver vi:

$\vec{u} = \vec{AB}$
För varje punkt, så finns en representant för u, med fotpunkt=P.

[AB] klassen av alla riktade sträckor.

(är konsekvent, använt av beteckningar för vektorer.)

OBS: \(\overrightarrow{AB} \neq \overrightarrow{BA} \) (har ej samma riktning)

\[\overrightarrow{AA} = \text{nollsträcka} \]

\[\overrightarrow{0} = \overrightarrow{0} = \overrightarrow{AA} \] nollvektorn (representeras av alla nollsträckor)

Parallellitet: Två vektorer u och v är parallella om de är lika riktade, (eller motsatta riktade)

Vi skriver: \(u \parallel v \) (u parallell med v)

Def: Om u representeras av \(\overrightarrow{AB} \), så är

\[u = \overrightarrow{BA} \]

den motsatta vektorn \(-u = \overrightarrow{BA} \]

Def: Betrakta eller längden av en vektor u är dess storlek, och betecknas med: \(|u| \)

Ex: Kraftar, Betrakta; Skyrmian. Richtningen av u-vektorn.

Def: Addition (operatorn +)

Summan av u och v (betecknas \(u + v \)).

Välj punkterna A, B, C så

\[u = \overrightarrow{AB} \]

\[v = \overrightarrow{BC} \]

Då definierar vi

\[u + v = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC} \]

OBS! Överensstämmer med de fysikaliska lagarna

för addition av krafter som verkar i samma punkt

Ex: \(u + (-u) = \overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{AA} = \overrightarrow{0} \) nollvektorn!

(\(-u \) är den additiva inversen till \(u \))

(Inför med \(\lambda + (-\lambda) = 0 \), \(1 + (-1) = 0 \)...)

Def: Multiplikation med skalor

Låt \(\lambda \) vara ett reellt tal, och u en vektor.

Då är \(\lambda u \) den vektor som har:

1. Längden: \(|\lambda| |u| \)
2. Riktningen: Richtning som u om \(\lambda > 0 \)

Motsatt riktning om \(\lambda < 0 \)

(Överensstämmer med \(\lambda = 0 \))

\[\lambda u = \begin{cases} u & \text{om } \lambda > 0 \\ -u & \text{om } \lambda < 0 \\ 0 & \text{om } \lambda = 0 \end{cases} \]
Ex. (-1)(u) har längden \(|-1| \cdot |u| = |u|\) men motsatt riktning, ty \(-1 < 0\)

\[
\frac{u}{-u} = (-1)\cdot u
\]

Def. Subtraktion

\[u - v = u + (-v) = u + (-v) \]

Antag \(u = \vec{AB}, v = \vec{AC} \)

Då är \(u - v = \vec{AB} + \vec{CA} = \vec{CB} \)

"Från spets på v till spets på u."

Räknelagar

1. \(u + v = v + u \) Kommutativa lagen
2. \((u + v) + w = u + (v + w) \) Associativa lagen
3. \(u + 0 = u \) trivial

(i) \(\lambda \cdot (u + v) = (\lambda u) + (\lambda v) \)

\[1 \cdot u = u \]

\[0 \cdot u = 0 \]

\[\lambda \cdot u = 0 \]

\[(-1) \cdot u = 0 \]

Distributiva lagar:

\[(\lambda + \mu)u = \lambda u + \mu u \]

\[\lambda (u + v) = \lambda u + \lambda v \]

Bevis. (i) a. Kommutativa lagen:

Vi ritar ett parallelogram, notera omgas av \(u \) och \(v \).

Due: \(u + v = v + u \)

Bevis. (i) b. Associativa lagen:

\[\lambda (u + v) + w = (\lambda u + \lambda v) + w = \lambda u + \lambda v + w \]

\[\lambda (u + v) = \lambda u + \lambda v \]

Bevis. Distributiva lagen 2

* Trianglarna är likformiga, ty vinkeln vid \(B \) = vinkeln vid \(E \)

* Dessutom:

\[\frac{|AB|}{|AE|} = \frac{|BC|}{|EF|} = \frac{1}{\lambda} \]

\[\frac{|AC|}{|DF|} = \frac{1}{\lambda} \]

* Dessutom: \(\vec{AC} \parallel \vec{DF} \)

** Diss: \(DF = \lambda AC \) Klart!
Linjär Algebra LV2 förel.3

Lemma 1 (Hjälpåsats)

Låt \(e \neq \mathbf{0} \) vara en vektor på linjen \(l \).

Om det finns punkter \(A \) och \(B \) på linjen, så att \(\mathbf{u} = \frac{\mathbf{AB}}{2} \), då är \(\mathbf{u} \parallel l \)

Bevis: \(\mathbf{u} /\!\!\!\parallel e \) (på samma linje)

Tag \(x = \frac{|\mathbf{u}|}{|e|} \) om \(u \) och \(e \) är likriktade

Sats 2

Låt \(e_1 \) och \(e_2 \) (\(e \neq \mathbf{0} \)) vara två icke-parallella vektorer i ett plan \(P \).

Då gäller för varje vektor \(\mathbf{u} \in P \) att \(\mathbf{u} = x_1 e_1 + x_2 e_2 \)

med en tydligt bestämda tal \(x_1 \) och \(x_2 \).
Vi har att \(u = u_1 + u_2 = x_1 e_1 + x_2 e_2 \) Existsen

Entydigheten: Antag:

\[u = x_1 e_1 + x_2 e_2 = y_1 e_1 + y_2 e_2 \]

Då gäller

\[x_1 e_1 + x_2 e_2 = y_1 e_1 + y_2 e_2 \]
\[x_1 e_1 - y_1 e_1 = x_2 e_2 - y_2 e_2 \]
\[(x_1 - y_1) e_1 + (x_2 - y_2) e_2 = 0 \]

\[\begin{align*}
 x_1 - y_1 &= 0 \\
 x_2 - y_2 &= 0
\end{align*} \]

Ej parallell

Sats 3:

Antag \(e_1, e_2, e_3 \) är tre vektorer i rummet,

som ej ligger i samma plan (ej komplanar).

Då gäller för varje given vektor \(u \) i rummet att:

\[u = x_1 e_1 + x_2 e_2 + x_3 e_3 \]

Mod entydligt beslämida tal \(x_1, x_2, x_3 \)

Bevis: Konstruktion:

\[\widehat{BB'} = x_3 e_3 \] (enligt lemma 1)

\[u' \] ligger i planet \(\Pi \)

Då finns enligt sats 2 tal \(x_1, x_2 \) så att

\[u' = x_1 e_1 + x_2 e_2 \]

Alltså är:

\[u = \widehat{AB} + \widehat{BB'} = x_1 e_1 + x_2 e_2 + x_3 e_3 \] (Existens)

Entydighet:

Antag \(u = x_1 e_1 + x_2 e_2 + x_3 e_3 = y_1 e_1 + y_2 e_2 + y_3 e_3 \)\n
Då jämnar kan vi välja ech a en av

vektorerna i termen av de två andra,

vilket skulle innebörda att alla ligger i ett plan.

Definition:

\[e \neq \mathbf{0} \parallel l \] säges vara en basis för

linjen \(l \)

\[u = x e \]

\[e_1, e_2 (ej \text{ parallella}) \] säges vara en basis för

planet \(\Pi \)

\[u = x_1 e_1 + x_2 e_2 \]

(1) \(\mathbf{u}_1, \mathbf{u}_2 \) ligger i en plan.

Då gäller:

\[
\mathbf{u}_1, \mathbf{u}_2 \text{ är en bas } \iff \mathbf{u}_1, \mathbf{u}_2 \text{ är linjärt oberoende.}
\]

eller

\[
\mathbf{u}_1 \text{ och } \mathbf{u}_2 \text{ är parallella } \iff \mathbf{u}_1, \mathbf{u}_2 \text{ är linjärt beroende.}
\]

(i) \(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \) är vektorer i rummet. Då gäller att:

\[
\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \text{ är en bas } \iff \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \text{ är linjärt oberoende.}
\]

eller

(ii) \(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \) är komplanar \(\iff \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \text{ är linjärt beroende.} \)

(iii) Fler vektorer än två i planen är linjärt beroende.

Fler vektorer än tre i rummet är linjärt beroende.

Basis: \((\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4)\) i rummet.

Anlag \(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4 \) är 4 vektorer i rummet.

Då gäller:

a. \(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \) är linjärt beroende \(\Rightarrow \mathbf{u}_1 = \lambda_1 \mathbf{u}_2 + \lambda_2 \mathbf{u}_3 + \cdots \)

eller

b. \(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \) är linjärt oberoende \(\Rightarrow \mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3 \text{ är en bas för rummet.} \)

\[
\Rightarrow \mathbf{u}_4 = \lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \lambda_3 \mathbf{u}_3
\]

Ex. Bestäm koordinaterna för vektorerna:

\[
\mathbf{u} + 2\mathbf{v} \text{ om } \mathbf{u} = (1, 2, 3) \text{ och } \mathbf{v} = (-2, 1, -7)
\]

En bas \(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \) är given.

\[
\text{Då är } \mathbf{u} + 2\mathbf{v} = (1 + 2(-2), 2 + 2(1), 3 + 2(-7)) = (-3, 4, -11)
\]

\[
\mathbf{u}_1, \ldots, \mathbf{u}_p \text{ (} p = 2, 3, \ldots \text{)} \text{ sägs vara linjärt beroende om någon av dem är en linjär kombination av de övriga. I annat fall, sägs de vara linjärt oberoende.}
\]

Ex. \(\mathbf{u}_1 = (-1, 2, 1), \mathbf{u}_2 = (0, -2, 1), \mathbf{u}_3 = (-2, 2, 3) \) är linjärt beroende, ty \(\mathbf{u}_3 = 2\mathbf{u}_1 + \mathbf{u}_2 \) \((\mathbf{u}_2 = \mathbf{u}_3 - 2\mathbf{u}_1, \mathbf{u}_1 = \frac{\mathbf{u}_2}{2}) \)
Sats S

$\mathbf{u}_1, \ldots, \mathbf{u}_p$ är linjärt oberoende

Ekvationen $\lambda_1 \mathbf{u}_1 + \ldots + \lambda_p \mathbf{u}_p = \mathbf{0}$

har endast den triviala lösningen $\lambda_1 = \lambda_2 = \ldots = \lambda_p = 0$.

Ex 10: Avgör om $\mathbf{u}_1 = (2,1,-1)$, $\mathbf{u}_2 = (3,2,-2)$, $\mathbf{u}_3 = (3,1,-1)$

utgör en bas för rummet.

(dvs: är de linjärt beroende, eller ej?)

Lös: Vi undersöker ekvationen

$$\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \lambda_3 \mathbf{u}_3 = \mathbf{0}$$

Lägg $\lambda_2 \mathbf{u}_2 + \lambda_3 \mathbf{u}_3 = \mathbf{0}$ i ekvationens 1:a linje

$$\lambda_1 (2,1,-1) + \lambda_2 (3,2,-2) + \lambda_3 (3,1,-1) = (0,0,0)$$

($\lambda_1 + 2\lambda_2 + 3\lambda_3 = 0$)

$$\lambda_2 = \lambda_3$$

Ställ $\lambda_2 = t$

$\lambda_1 - 2t - 3t = 0$

$$\lambda_1 = 5t$$

Tag $t=1$, $-3\mathbf{u}_1 + \mathbf{u}_2 + 3\mathbf{u}_3 = \mathbf{0}$, $\mathbf{u}_1 = \frac{1}{3} \mathbf{u}_2 + \frac{1}{3} \mathbf{u}_3$

Rummet: Fixera en punkt O (origin) i rummet.

För varje punkt P i rummet kan vi bilda ortvektorn \overrightarrow{OP}.

Lösa $\overrightarrow{OP} = x \mathbf{e}_x + y \mathbf{e}_y + z \mathbf{e}_z$

(\overrightarrow{OP} är en helhet av ortvektorer, $\mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z$ är de tre enhetvektorn i koordinatsystemet $O, \mathbf{e}_x, \mathbf{e}_y, \mathbf{e}_z$)

Planet (i rummet)

$$\overrightarrow{r} \cdot \overrightarrow{OP} = x \mathbf{e}_x + y \mathbf{e}_y = (x,y)$$

$\mathbf{e}_x, \mathbf{e}_y$ på \overrightarrow{r}

När ej alltid varandra

En linje karakteriseras av:

- en punkt P_0 på linjen, och av
- en riktningsteckning \mathbf{v}

En punkt P ligger på linjen, om:

$$\overrightarrow{r} = t \cdot \mathbf{v}$$

för något realt t

Omvänd: varje punkt P som uppfyller

x ligger på linjen

17
Obs!

\[\overrightarrow{OP} = \overrightarrow{OP}_0 + \overrightarrow{PP} = \overrightarrow{OP}_0 + t \mathbf{v}, \quad (t \in \mathbb{R}) \]

Ekvationen för en linje på vektorform

I rummet är \(\overrightarrow{OP} = (x,y,z) \) och \(\overrightarrow{OP}_0 = (x_0,y_0,z_0) \), \n\[\mathbf{v} = (a,b,c) \] i basen \(e_x,e_y,e_z \)

Dus:

\[(x,y,z) = (x_0,y_0,z_0) + t(a,b,c), \quad t \in \mathbb{R} \]

(= Koordinaterna för punkten \(P/\)vektorn \(\overrightarrow{OP} \).)

Dus:

\[\begin{cases} x = x_0 + at & \text{Linjens ekvation på parameterform} \\ y = y_0 + bt \\ z = z_0 + ct \end{cases} \]

(Även för snedvinkliga koordinatsystem)

Ex 5’ Bestäm ekvationen för linjen genom punkterna \(P = (1,1,2) \) & \(Q = (2,2,3) \)

\[L: \text{En riktningvektor är} \]
\[\overrightarrow{PQ} = \mathbf{v} = \overrightarrow{PQ} \cdot \overrightarrow{OP} = (2,2,3) - (1,1,2) = \]
\[= (1,1,0) \]

Svar: Linjens ekvation är \(\{ (x,y,z) = (1,1,2) + t(1,1,0) \} \),

eller:
\[\begin{cases} x = 1 + t \\ y = 1 + t \\ z = t \end{cases} \]

Ex 8’ Bestäm riktningsvektorn för linjen \(7x + 2y - 3 = 0 \)

\[\Rightarrow \text{Bestäm riktningsvektorn för linjen.} \]

Lös:

\[y \text{ är enok} \\ \text{variabel. Sätt} \; y = -7t \]

\[\text{Då är} \; \frac{7x}{2} = 3 - 2(-7t) \iff x = \frac{2}{7} + 2t \]

Dus:
\[\begin{cases} x = \frac{2}{7} + 2t \\ y = -7t \end{cases} \]

En riktningvektor är
\[\mathbf{v} = (2,-7) \]

Dus:
\[(\alpha,\beta) = \left(\frac{2}{7}, 0 \right) + t \left(2, -7 \right) \]
Ex 6: Avgör m, l, och k så att varandra.

\[
\begin{align*}
\begin{cases}
 x = 1-t \\
 y = 2+t \\
 z = -1+4t
\end{cases}, & t \in \mathbb{R} \\
\begin{cases}
 x = 2-s \\
 y = 1-s \\
 z = 1+2s
\end{cases}, & s \in \mathbb{R}
\end{align*}
\]

om det finns en skärningspunkt \(P = (x_0, y_0, z_0) \), så finns tal \(s \) och \(t \) så att:

\[
\begin{align*}
 x_0 = 1-t \\
 y_0 = 2+t \\
 z_0 = -1+4t
\end{align*}
\]

och att:

\[
\begin{align*}
 x_0 = 2-s \\
 y_0 = 1-s \\
 z_0 = 1+2s
\end{align*}
\]

Gansselinination ⇒ (här) inga lösning.

PLANETS EKvation

En punkt \(\Pi \) karakteriseras av en punkt \(P_0 \) i planet och två (riktning-) vektorer \(\mathbf{v}_1, \mathbf{v}_2 \parallel \Pi \), men ej parallella med varandra.

En punkt \(P \in \Pi \) precis då:

\[\overrightarrow{PP_0} \parallel \mathbf{v}_1 \]

Eftersom \(\mathbf{v}_1 \neq \mathbf{v}_2 \), så utgör de en bas för vektorer i planet.

Och: det finns tal \(s \) och \(t \), så att:

\[\overrightarrow{PP_0} = s \mathbf{v}_1 + t \mathbf{v}_2 \]

Vi introducerar ett koordinat system i rummet.

\((0, e_x, e_y, e_z) \)

För en punkt \(P \in \Pi \) gäller att

\[\overrightarrow{OP} = \overrightarrow{O}P_0 + \overrightarrow{P_0P} = \overrightarrow{O}P_0 + s \mathbf{v}_1 + t \mathbf{v}_2 \]

Antag att:

\[\overrightarrow{O}P_0 = (x_0, y_0, z_0) \]

\[\mathbf{v}_1 = (\alpha_1, \beta_1, \delta_1) \]

\[\mathbf{v}_2 = (\alpha_2, \beta_2, \delta_2) \]

och att:

\[\overrightarrow{O}P_0 = (\alpha_1, \beta_1, \delta_1). \]

Då får vi:

\[(x, y, z) = (x_0, y_0, z_0) + s(\alpha_1, \beta_1, \delta_1) + t(\alpha_2, \beta_2, \delta_2) \]

\[\begin{cases}
 x = x_0 + \alpha_1 s + \alpha_2 t \\
 y = y_0 + \beta_1 s + \beta_2 t \\
 z = z_0 + \delta_1 s + \delta_2 t
\end{cases}, \quad (s, t \in \mathbb{R}) \]

Planets ekvation på parameterform

Ex: Bestäm planet genom punktarna

\[P = (1, 2, 0), \quad Q = (3, 1, 3), \quad R = (1, 2, 3) \]

Lös: Vi behöver två riktningvektorer:

\[\mathbf{v}_1 = \overrightarrow{PQ} = (3, 1, 3) - (1, 2, 0) = (2, 1, 3) \]

\[\mathbf{v}_2 = \overrightarrow{PR} = (1, 2, 3) - (1, 2, 0) = (0, 0, 3) \]

Såväl:

Planets ekvation är:

\[(x, y, z) = (1, 2, 0) + s(2, 1, 3) + t(0, 0, 3) \]

\[(x, y, z) = (1, 2, 0) + s(2, 1, 3) + t(0, 0, 3), \quad (s, t \in \mathbb{R}) \]
Sats 2a. Ekvationen $ax+by+cz+d=0$ beskriver ett plan i rummet.

(minst ett av talen $a, b, c
eq 0$)

Bevis: $a
eq 0$

Sätt $y=-as$, $z=-at$ (fria varibler)

p är

$ax+by+cz+d=0$

$\begin{cases} x = -d + bs + ct \\ y = -as \\ z = -at \end{cases} $

Utfyllning: punkten $(-d,0,0)$

$v_1 = (b,-a,0)$ och $v_2 = (c,0,-a)$

Sats 2b. Ekvationen för ett plan på parameterform kan skrivas på formen: $ax+by+cz+d=0$

(dus på affin form)

Ex: Antag att vi har planet P_6.

$P_6 \begin{cases} 2s = x-t \\ 5+4t = -y+2 \\ 3s+4t = z \end{cases}$

Ekvationen för planet är:

$\begin{cases} 5+4t = -y+2 \\ -8t = x+2y-5 \\ 3s+4t = z \end{cases}$

Geometrisk tolkning av linjär system.

$\begin{cases} a_1 x + b_1 y + c_1 z + d_1 = 0 \\ a_2 x + b_2 y + c_2 z + d_2 = 0 \\ a_3 x + b_3 y + c_3 z + d_3 = 0 \end{cases} $: P_1, P_2, P_3

Vare evening beskriver ett plan i rummet (givet ett bestämt koordinat system).

Tolknings fall kan inträffa:

1. Sammanfallande planer (ingen lösning)
2. Parallella planer (entydig lösning)
3. Skilda varandra längs en linje

Vi har då en enparametrisk lösning

$(x,y,z) = (x_0, y_0, z_0) + t(d_1, d_2, d_3)$

4. Alla plan är identiska

Vi har en tväparametrisk lösning

$(x,y,z) = (x_0, y_0, z_0) + s(d_1, d_2, d_3) + t(d_4, d_5, d_6)$

För två plan: kan ej fall 2 inträffa.

Planen P_1 och P_2 är parallella om

$(x_2, b_2, c_2) = k(a_2, b_2, c_2)$

dus endast en konstant (k) för samtliga t.

Detta motsvarar fall 1 el. 4 ovan.
ALGEBRA

FÖRBLÄNNING 5

4. **Skalar produkt**

 Orienterat

 Def:

 SKALAR PRODUKT

 Skalar produkten av **u och v**

 \[u \cdot v = |u| \cdot |v| \cdot \cos(\theta) \]

 Såls: (Projektionsformeln)

 \[u' = \text{projektionen av } u \text{ på } v \]

 \[u' = \frac{u \cdot v}{|v|^2} \cdot v \]

 Prävis:

 \[u' \parallel v \]

 |u'| = |u| \cdot \cos(\theta)

 längd

 Så låta riktningen som v, om \(0 \leq \theta < \frac{\pi}{2}\)

 motsatt riktningen som v annars

 Dvs:

 \[v_1 = u' = |u| \cdot \cos(\theta) \cdot \frac{v}{|v|} \]

 \[\frac{v}{|v|} = \frac{1}{|v|} \cdot |v| = 1 \]

 \[|v'| = |u| \]

 \[u' \text{ ok!} \]

OBS!

- \(u \cdot v > 0 \Rightarrow 0 < \theta < \frac{\pi}{2} \) (här är \(\cos \) positiv)
- \(u \cdot v < 0 \Rightarrow \frac{\pi}{2} < \theta < \pi \) (här är \(\cos \) negativ)
- \(u \cdot v = 0 \Rightarrow \theta = \frac{\pi}{2} \) ortogonala!

Def: Om \(u \cdot v = 0 \) är ortogonala (**utan vinkelräta**).

Vi skriver \(u \perp v \)

Ex:

\[|u| = 3, \quad |v| = \frac{1}{2} \]

\[u \cdot v = 3 \cdot \frac{1}{2} \cdot \cos(30) = \frac{3 \sqrt{3}}{4} \]

Ex2:

Arbeta med **vinkels)** är:

\[W = F \cdot r = (|F| \cdot \cos(\theta)) \cdot r \]

(kraftens skapade i vinkel vinkeln).

Z6

(i) \(u \cdot v = |u| \]

\[|u| \cdot \cos(\theta) = |u| \cdot |v| \cdot \cos(\theta) \]

(ii) \(u \cdot v = v \cdot u \) (kommutativ)

(iii) \((u_1 + u_2) \cdot v = u_1 \cdot v + u_2 \cdot v \)

(iv) \((\lambda u) \cdot v = \lambda (u \cdot v) \]

\(u \) och \(v \\

Så sågar \(u \\

för ortogonala (**utan vinkelräta**).

Vi skriver \(u \perp v \)
\[d_1^2 + d_2^2 = 2(a^2 + b^2) \]

L : \(\|u\| = a \), \(\|v\| = b \),
\[\|u+vl\| = d_1 \quad \|u-vl\| = d_2. \]

\[\|v\| = \|u+vl\|^2 + \|u-vl\|^2 = (u+vl)(u+vl) + (u-vl)(u-vl) \]
\[= (u+vl)u + (u+vl)v + (u-vl)u - (u-vl)v \]
\[= u \cdot u + v \cdot v + u \cdot v + v \cdot u - u \cdot v - v \cdot u - u \cdot v - v \cdot u \]
\[= 2(\|u\|^2 + \|v\|^2) = 2 \|

Bevis: (iii)

\[w' = \text{projektionen av } w \text{ p\aa } v. \]

\[u_1' = \frac{u_1 \cdot v}{\|v\|^2} \quad \quad u_2' = \frac{u_2 \cdot v}{\|v\|^2} \]

Men \(w' = \frac{w \cdot v}{\|v\|^2} = \frac{1}{\|v\|^2} ((u_1 + u_2) \cdot v) \]

Alltså \(\delta i j = \left(u_1 + u_2 \right) \cdot v = (u_1 \cdot u + u_2 \cdot v) \)

Alltåa är:

\[\delta ij = \begin{cases} 0 & \text{om } i \neq j \\ 1 & \text{om } i = j \end{cases} \]

\[\text{Tricel} i \text{lägger } i \text{ figuren.} \]

ortonormerade baser

Om
\[\hat{u} = x_1 \hat{e}_1 + x_2 \hat{e}_2 \quad \quad \hat{v} = y_1 \hat{e}_1 + y_2 \hat{e}_2 \]

Då är:
\[\hat{u} \cdot \hat{v} = x_1 y_1 \hat{e}_1 \hat{e}_1 + x_1 y_2 \hat{e}_1 \hat{e}_2 + x_2 y_1 \hat{e}_1 \hat{e}_2 + x_2 y_2 \hat{e}_2 \hat{e}_2 = 0 \quad (e_1 \perp e_2) \]

\[\| \hat{e}_1 \| = \| \hat{e}_2 \| = 1 \]

Om
\[\hat{u} = x_1 \hat{e}_1 + x_2 \hat{e}_2 + x_3 \hat{e}_3 \quad \quad \hat{v} = y_1 \hat{e}_1 + y_2 \hat{e}_2 + y_3 \hat{e}_3 \]

Då är:
\[\hat{u} \cdot \hat{v} = x_1 y_1 \hat{e}_1 \hat{e}_1 + x_1 y_2 \hat{e}_1 \hat{e}_2 + x_1 y_3 \hat{e}_1 \hat{e}_3 + x_2 y_1 \hat{e}_1 \hat{e}_2 + x_2 y_2 \hat{e}_2 \hat{e}_2 + x_2 y_3 \hat{e}_2 \hat{e}_3 + x_3 y_1 \hat{e}_1 \hat{e}_3 + x_3 y_2 \hat{e}_2 \hat{e}_3 + x_3 y_3 \hat{e}_3 \hat{e}_3 = 0 \]

\[= x_1 y_1 + x_2 y_2 + x_3 y_3 \quad \text{om } \hat{e}_1 \cdot \hat{e}_2 = \begin{cases} 0 & \text{om } i \neq j \\ 1 & \text{om } i = j \end{cases} \]
Seite 30

Seite 29

Wichtig

<table>
<thead>
<tr>
<th>$\mathbf{u} = (x, y, z)$</th>
<th>in ON-Basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbf{w} = (x', y', z')$</td>
<td>in ON-Basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$</td>
</tr>
</tbody>
</table>

Basis: $\mathbf{u} = \mathbf{w}$ nach $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$	$\mathbf{u} = \mathbf{w}$ nach $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$
$\mathbf{u} = x \mathbf{e}_1 + y \mathbf{e}_2 + z \mathbf{e}_3$	$\mathbf{w} = x' \mathbf{e}_1 + y' \mathbf{e}_2 + z' \mathbf{e}_3$
$\mathbf{u} = \mathbf{w}$	$\mathbf{u} = \mathbf{w}$

| Tor($\mathbf{u} \mathbf{v}$): $\mathbf{u} \mathbf{v}$ | $\mathbf{u} \mathbf{v}$ |
| $\mathbf{u} \mathbf{v} = (2, 1, 1)$ | $\mathbf{u} \mathbf{v} = (2, 1, 1)$ |

Ex: Bestimmung Projektionen auf $\mathbf{u} = (1, 1, 0)$	Planen
$\mathbf{u} = (1, 1, 0)$	$\mathbf{u} = (1, 1, 0)$
$\mathbf{u} = (3, 1, 0)$	$\mathbf{u} = (3, 1, 0)$

| Plano: $\mathbf{u} = \mathbf{v}$ | $\mathbf{u} = \mathbf{v}$ |
| $\mathbf{u} = \mathbf{v}$ | $\mathbf{u} = \mathbf{v}$ |

Koordinaten in ON-Basis $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$	$\mathbf{p} = (x, y, z)$
$\mathbf{p} = (x, y, z)$	$\mathbf{p} = (x, y, z)$
$\mathbf{p} = (x, y, z)$	$\mathbf{p} = (x, y, z)$

| Anmerkung: $\mathbf{u} = \mathbf{v}$ | $\mathbf{u} = \mathbf{v}$ |
| $\mathbf{u} = \mathbf{v}$ | $\mathbf{u} = \mathbf{v}$ |

Men: $\mathbf{u} = (1, 1, 1)$	$\mathbf{u} = (1, 1, 1)$
$\mathbf{u} = (1, 1, 1)$	$\mathbf{u} = (1, 1, 1)$
$\mathbf{u} = (1, 1, 1)$	$\mathbf{u} = (1, 1, 1)$

| $\theta = \arccos(\frac{3}{4})$ | $\theta = \arccos(\frac{3}{4})$ |
| $\theta = \arccos(\frac{3}{4})$ | $\theta = \arccos(\frac{3}{4})$ |

| $\theta = \arccos(\frac{3}{4})$ | $\theta = \arccos(\frac{3}{4})$ |
| $\theta = \arccos(\frac{3}{4})$ | $\theta = \arccos(\frac{3}{4})$ |

| $\theta = \arccos(\frac{3}{4})$ | $\theta = \arccos(\frac{3}{4})$ |
| $\theta = \arccos(\frac{3}{4})$ | $\theta = \arccos(\frac{3}{4})$ |
Bevis: (i) De are komplementära punkter

(iv) De är identiska

\[(a_2, b_2, c_2) = k(a_1, b_1, c_1) \]

I fall (i): multiplicera (i) med \(-\frac{a_2}{a_1}\) och addera ihop

\[a_1 x + b_1 y + c_1 z + d_1 = 0 \]
\[\Rightarrow 0 \cdot x + \left(b_2 - \frac{a_2}{a_1} b_1 \right) y + \left(c_2 - \frac{a_2}{a_1} c_1 \right) z + d_2 - \frac{a_2}{a_1} d_1 = 0 \]

Om \(a_1 \neq 0\)

Men lösningar finns. (Vet från början!)

Dvs: \(b_2 = a_2 - \frac{a_2}{a_1} b_1, \ c_2 = a_2 - \frac{a_2}{a_1} c_1, \ a_2 = \frac{a_2}{a_1} a_1, \ c_2 = a_2 - \frac{a_2}{a_1} c_1, \ k = \frac{a_2}{a_1} \)

Plan

\[\Pi: ax + by + cz + d = 0 \]
\[\Pi_0: ax + by + cz = 0 \]
\[\nu = (a_1, b_1, c_1) \parallel \Pi \Rightarrow \nu \parallel \Pi_0 \]

Projektion och Speling

Vi har att \(\hat{u} = \hat{Q}P \)

Koordinaterna för \(Q = \overrightarrow{OQ} = \overrightarrow{OP} - \hat{u} \)

\(O \) parallell = \(\hat{u} - \hat{u}_0 \)

OBS! Bara i ett \(\alpha \)-system kan normalvektorn hittas latt.
Kapitel 5 Vecor Produkt

Positiv/negativ orientering

Vektor Produkt (Kryssprodukt): \(\mathbf{u} \times \mathbf{v} \)

Skalärt Trippelprodukt: \((\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}\)

Def. Anläg att \(v_1, v_2, v_3\) ej är komplanar (L.O.B.)

Vi säger att \(v_1, v_2, v_3\) är

Positivt orienterade, om:

- den minsta vridning som överför \(v_1\) till \(v_2, v_3\) är

Ske moturs (motsats), sett från spetsen på \(v_3\).

Annars är de negativt orienterade.

Kontroll m. högerhanden; eft. oväntat.

Negativ orientering: samma fingerordning, fast för vänster hand.

Lemma: Om \(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\) är pos. orienterade

\[\Rightarrow \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_1\]

\[\Rightarrow \mathbf{v}_3, \mathbf{v}_1, \mathbf{v}_2\]

\[\Rightarrow \mathbf{v}_1, \mathbf{v}_3, \mathbf{v}_2\]

\[\Rightarrow \mathbf{v}_3, \mathbf{v}_2, \mathbf{v}_1\]

Def. Om \(\mathbf{u} \neq \mathbf{0}, \mathbf{v} \neq \mathbf{0}\) så defineras

\[\mathbf{u} \times \mathbf{v} \text{ (vektorprodukt) enligt:}\]

\[
\begin{align*}
\text{Area} & = |\mathbf{u} \times \mathbf{v}| = |\mathbf{u}| \cdot |\mathbf{v}| \cdot \sin(\theta) \\
A & = \text{basen} \times \text{höjden} \\
& = |\mathbf{u}| \cdot \frac{h}{\sin(\theta)} \\
& = |\mathbf{v}| \cdot \sin(\theta)
\end{align*}
\]

Riktning:

(i) \(\mathbf{u} \times \mathbf{v}\) är \(\perp \mathbf{u} \& \mathbf{v}\)

(ii) \(\mathbf{u} \times \mathbf{v}\) är pos. orienterade

(iii) \(\mathbf{u}, \mathbf{v}, \mathbf{u} \times \mathbf{v}\) är pos. orienterade

OBS! \(\mathbf{v} \times \mathbf{u} = - \mathbf{u} \times \mathbf{v}\)

(Vektor-produkten är ej kommutativ)

- Om \(\mathbf{u}\), el. \(\mathbf{v}\) är \(0\), är \(\mathbf{u} \times \mathbf{v}\) nollvektorn.
- \(\mathbf{u} \times \mathbf{u} = \mathbf{0}\), ty \(\sin(\theta) = 0 \Rightarrow \text{längden} = 0\).

Def. Den skalära trippelprodukten är

\[v(\mathbf{u}, \mathbf{v}, \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}\]

\[v(\mathbf{u}, \mathbf{v}, \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \cdot \mathbf{v}\]

\[= |\mathbf{w}| \cdot |\mathbf{v}| \cdot \cos(\theta) \text{ volymen av \(\text{platta}\) med \(\mathbf{u}\) och \(\mathbf{v}\) som \\parallelepiped som \(\mathbf{w}\) spanns upp av \(\mathbf{u}, \mathbf{v}, \mathbf{w}\)}\]

Om \(\mathbf{u}, \mathbf{v}, \mathbf{w}\) är pos. vilka kan

\[\mathbf{u} \times \mathbf{v}\]
Sats 2: \[V(\mathbf{u}, \mathbf{v}, \mathbf{w}) = \begin{cases} \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) & \text{om } \mathbf{u}, \mathbf{v}, \mathbf{w} \text{ är pos. orienterade} \\ -\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) & \text{om } \mathbf{u}, \mathbf{v}, \mathbf{w} \text{ är neg. orienterade} \end{cases} \]

Följdsats (sats 3)
\[(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = (\mathbf{v} \times \mathbf{w}) \cdot \mathbf{u} = (\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v} \quad \text{(positivt orienterade)} \]
\[= -(\mathbf{w} \times \mathbf{u}) \cdot \mathbf{v} = -(\mathbf{u} \times \mathbf{w}) \cdot \mathbf{v} \quad \text{(negativt orienterade)} \]

Räknelagar för vektor produkt

(i) \[\mathbf{u} \times \mathbf{v} = \mathbf{0} \quad \text{om } \mathbf{u} \parallel \mathbf{v} \]

(ii) \[\mathbf{u} \times \mathbf{v} = -\mathbf{v} \times \mathbf{u} \]

(iii) \[\mathbf{u} \times (\mathbf{v} + \mathbf{w}) = \mathbf{u} \times \mathbf{v} + \mathbf{u} \times \mathbf{w} \]

(iv) \[\lambda (\mathbf{u} \times \mathbf{v}) = \lambda (\mathbf{u} \times \mathbf{v}) \]

Hjälp sats (för att bevisa (ii))

* Om \(\mathbf{u} \cdot \mathbf{r} = \mathbf{v} \cdot \mathbf{r} \) för alla vektorer \(\mathbf{r} \)
\[\Rightarrow \mathbf{u} = \mathbf{v} \]

Bevis: \[x \Rightarrow \mathbf{u} \cdot \mathbf{r} - \mathbf{v} \cdot \mathbf{r} = 0 \]
\[(\mathbf{u} - \mathbf{v}) \cdot \mathbf{r} = 0 \quad \text{för alla } \mathbf{r} \]

Vi kan speciellt välja \(\mathbf{r} = \mathbf{u} - \mathbf{v} \)

Teorema ger:
\[(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v}) = 0 \]
\[|\mathbf{u} - \mathbf{v}|^2 = 0 \Rightarrow \mathbf{u} - \mathbf{v} = \mathbf{0} \]

Dus: \(\mathbf{u} = \mathbf{v} \)

Bevis av (iii) "Plausibel testades!!"

Tag en (godtycklig) vektor \(\mathbf{r} \).

Då är:
\[(\mathbf{u} + \mathbf{u}_2) \times \mathbf{r} = (\mathbf{v} \times \mathbf{r}) \cdot (\mathbf{u} + \mathbf{u}_2) = (\mathbf{v} \times \mathbf{r}) \cdot \mathbf{u} + (\mathbf{v} \times \mathbf{r}) \cdot \mathbf{u}_2 = (\mathbf{v} \times \mathbf{r}) \cdot \mathbf{u} + (\mathbf{v} \times \mathbf{r}) \cdot \mathbf{u}_2 \]

\[= (\mathbf{v} \times \mathbf{r}) \cdot \mathbf{u} + (\mathbf{v} \times \mathbf{r}) \cdot \mathbf{u}_2 = [\text{sats 3}] \]
\[= (\mathbf{v} \times \mathbf{r}) \cdot \mathbf{u} + (\mathbf{v} \times \mathbf{r}) \cdot \mathbf{u}_2 \]

Enligt hjälp satsen får vi att
\[(\mathbf{u}_1, \mathbf{v} \times \mathbf{r} + (\mathbf{u}_2, \mathbf{v} \times \mathbf{r})) \cdot \mathbf{r} = (\mathbf{u}_1, \mathbf{v} \times \mathbf{r} + \mathbf{u}_2, \mathbf{v} \times \mathbf{r}) \cdot \mathbf{r} \]
\[\Rightarrow (\mathbf{u}_1, \mathbf{v} \times \mathbf{r} + (\mathbf{u}_2, \mathbf{v} \times \mathbf{r})) = \mathbf{u}_1, \mathbf{v} \times \mathbf{r} + \mathbf{u}_2, \mathbf{v} \times \mathbf{r} \]
\[\Rightarrow (\mathbf{u}_1, \mathbf{v} \times \mathbf{r} + (\mathbf{u}_2, \mathbf{v} \times \mathbf{r})) = \mathbf{u}_1, \mathbf{v} \times \mathbf{r} + \mathbf{u}_2, \mathbf{v} \times \mathbf{r} \]

Anlag att \(\mathbf{u} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + x_3 \mathbf{e}_3 = (x_1, x_2, x_3) \) i basen \(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \)
\[\mathbf{v} = y_1 \mathbf{e}_1 + y_2 \mathbf{e}_2 + y_3 \mathbf{e}_3 = (y_1, y_2, y_3) \] i basen \(\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3 \)

\[35 \]
Då är:

\[0 = -\vec{e}_2 \times \vec{e}_3 \]

\[\vec{a} \times \vec{v} = \vec{x}_1 \vec{e}_1 x \vec{e}_1 + \vec{x}_2 \vec{e}_2 x \vec{e}_2 + \vec{x}_3 \vec{e}_3 x \vec{e}_3 \]

\[+ \vec{x}_2 \vec{e}_2 \vec{x}_2 \vec{e}_2 + \vec{x}_3 \vec{e}_3 \vec{x}_3 \vec{e}_3 \]

\[+ \vec{x}_3 \vec{e}_3 \vec{x}_3 \vec{e}_3 \]

\[= \begin{pmatrix} \vec{x}_1 \vec{e}_1 \vec{x}_1 \vec{e}_1 & \vec{x}_2 \vec{e}_2 \vec{x}_2 \vec{e}_2 & \vec{x}_3 \vec{e}_3 \vec{x}_3 \vec{e}_3 \end{pmatrix} \]

\[\Rightarrow \begin{pmatrix} \vec{e}_1 \vec{e}_1 & \vec{e}_2 \vec{e}_2 & \vec{e}_3 \vec{e}_3 \end{pmatrix} \]

\[\Rightarrow \begin{pmatrix} \vec{e}_1 \vec{e}_1 & \vec{e}_2 \vec{e}_2 & \vec{e}_3 \vec{e}_3 \end{pmatrix} \]

\[= (x_2 y_3 - x_3 y_2) \vec{e}_2 \times \vec{e}_3 + (x_3 y_1 - x_1 y_3) \vec{e}_3 \times \vec{e}_1 + \]

\[+ (x_1 y_2 - x_2 y_1) \vec{e}_1 \times \vec{e}_2 \]

Ex. \((1,0,2) \times (1,2,3) \)

(Givet i eu AO-bas)

\[e_1, e_2, e_3 \]

\[(1,0,2) \times (1,2,3) = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & 3 \end{pmatrix} \]

\[= \begin{pmatrix} 0 & 2 \\ 2 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} \]

\[= (-4, 3, 2) = (-4, 1, 2) \]

Om \(\vec{e}_1, \vec{e}_2, \vec{e}_3 \) är en rätvinklad (pos. ori.) ON-bas

Då gäller att:

\[\vec{e}_2 \times \vec{e}_3 = \vec{e}_1 \]

\[\vec{e}_3 \times \vec{e}_1 = \vec{e}_2 \]

\[\vec{e}_1 \times \vec{e}_2 = \vec{e}_3 \]

(\(x_1, x_2, x_3 \) \times (y_1, y_2, y_3) = \text{HL} : \begin{pmatrix} \vec{e}_1 \vec{e}_2 \vec{e}_3 \end{pmatrix} = \begin{pmatrix} \vec{e}_1 \vec{e}_2 \vec{e}_3 \end{pmatrix} \]

\[\begin{pmatrix} \vec{e}_1 \vec{e}_2 \vec{e}_3 \end{pmatrix} \]

\[\begin{pmatrix} x_1 \quad x_2 \quad x_3 \end{pmatrix} \]

\[\begin{pmatrix} y_1 \quad y_2 \quad y_3 \end{pmatrix} \]

\[\begin{pmatrix} x_2 y_3 - x_3 y_2 \\ x_3 y_1 - x_1 y_3 \\ x_1 y_2 - x_2 y_1 \end{pmatrix} \]

\\

\[\text{def} \quad \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc \]

(Sterkform av \(e_1 \) står i)

\[\begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix} \vec{e}_1 + \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \vec{e}_2 + \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \vec{e}_3 \]

37
Kap 7. Matriser

Ex: \[
\begin{align*}
\begin{cases}
-x - 3y + z = 1 \\
x - y - 2z = 2 \\
2x - 4y + z = 3
\end{cases} \iff \begin{cases}
-x - 3y + z = 1 \\
2y - 3z = 1 \\
2y - z = 1
\end{cases}
\end{align*}
\]

Koefficientmatrisen är: \[
\begin{pmatrix}
1 & -3 & 1 \\
1 & -1 & -2 \\
2 & -4 & 1
\end{pmatrix}
\]

Vi kan skriva eldationsystemet ovan på matrisform:

A \cdot \begin{pmatrix}
x \\
y \\
z
\end{pmatrix} = \begin{pmatrix} y \\
x \\
z
\end{pmatrix}

B = \begin{pmatrix}
1 \\
2 \\
3
\end{pmatrix}

AX = B

där vi med AX räcker kolonnvektorn vi ekvivallar

där varje rad i A skalärmultiplikeras med

Def 1. En matris är ett rektangulärt schema av tal, i rad kolumn

\[A = \begin{pmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{pmatrix}\]

typ: m x n

m = antal rader

n = antal kolonner

m x n = antal element

Ex: \[A = \begin{pmatrix} 2 & 0 & -1 \end{pmatrix}\]

av typ: 1 x 3

\[a_{12} = d\]

Def: RÄKNEOBERATIONER

Addition (+); Antag att typ A = tyxB = m x n

\[\begin{pmatrix}
c = A + B = (a_{ij}) + (b_{ij}) = (a_{ij} + b_{ij})
\end{pmatrix}
\]

Ex: \[
\begin{align*}
\begin{pmatrix}
1 & 2 & 3 \\
0 & 1 & 0
\end{pmatrix}
+ \begin{pmatrix}
1 & -2 & 1 \\
0 & 1 & -2
\end{pmatrix} &= \begin{pmatrix}
1+1 & 2+3 & 3+1 \\
0+0 & 1+2 & 1+0
\end{pmatrix} \\
&= \begin{pmatrix}
2 & 5 & 3 \\
0 & 3 & 1
\end{pmatrix}
\end{align*}
\]

Anmärkning: Två matriser A = b_{ij} och B = b_{ij} är lika precis därför att de är av samma typ! Och a_{ij} + b_{ij}
III Multiplikation

Ex: \(\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 3 & 0 & 1 \\ 6 & 0 & 3 \\ 0 & 3 & 6 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 0 \\ 0 & 3 & 6 \\ 0 & 3 & 6 \end{pmatrix} \)

Räknelagar (Colts)

1. \(A + B = B + A \)
2. \((A + B)C = A(C + B) \)
3. \(A + 0 = A \)
4. \(A + (-A) = 0 \)
5. \(\lambda(A + B) = \lambda A + \lambda B \)
6. \(\lambda (A + B) = \lambda A + \lambda B \)

iev (AB)C = A(BC)

Ex: \(\begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 1 & 0 & 0 \end{pmatrix} \times \begin{pmatrix} 3 & 0 & 1 \\ 6 & 0 & 3 \\ 0 & 3 & 6 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 0 \\ 0 & 3 & 6 \\ 0 & 3 & 6 \end{pmatrix} \)

Bevis av \(A \times B = \lambda \)

Ex: \(\begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \ldots & a_{mp} \end{pmatrix} \times \begin{pmatrix} b_1 \\ \vdots \\ b_q \end{pmatrix} = \begin{pmatrix} \sum_{k=1}^{p} a_{1k} b_k \\ \vdots \\ \sum_{k=1}^{p} a_{mk} b_k \end{pmatrix} \)

\(BA = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 0 & 2 \\ 2 & 3 & 0 \end{pmatrix} \times \begin{pmatrix} 3 & 0 & 1 \\ 6 & 0 & 3 \\ 0 & 3 & 6 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 3 \\ 1 & -1 & 0 \\ 3 & 3 & 3 \end{pmatrix} \) aw typ 3 x 3

\(BA = \begin{pmatrix} 3 & 2 & 0 \\ 0 & 3 & 6 \\ 0 & 3 & 6 \end{pmatrix} \) aw typ 3 x 3

\(AB \neq BA \)

matrismultiplikation är ej kommutativ!!
\[
A(3c) = (a_{11}v_{11} + a_{12}v_{12} + \ldots + a_{1n}v_{1n})
\]

Dvs. LIKA !!

Transponering

\[
A = \begin{pmatrix}
1 & 2 \\
3 & 4 \\
5 & 6 \\
7 & 8 \\
\end{pmatrix}
\]

\[
A^T = \begin{pmatrix}
1 & 3 \\
2 & 4 \\
6 & 8 \\
\end{pmatrix}
\]

Transponderad av A

Def. Om \(A = (a_{ij})_{m \times n} \), så är \(A^T = (a_{ji})_{n \times m} \)

Dvs. \(a_{ij} = a_{ji} \)

Ex:

\[
A = \begin{pmatrix}
0 & 2 & 3 \\
-3 & 4 & 2 \\
\end{pmatrix},
\]

\[
A^T = \begin{pmatrix}
0 & -3 \\
2 & 4 \\
3 & 2 \\
\end{pmatrix}
\]

Diagonalelementen disturbance ej!

\[
A_{11} = a_{12} = 2
\]

För kvadratiska matriser (m=n)

Spålla elementen i huvuddiagonalen.

\[
X = (1,2,3) \text{ så är } X^T = \begin{pmatrix}
1 \\
2 \\
3 \\
\end{pmatrix}
\]

Sats 52

\[
(A^T)^T = A \quad \quad * (AB)^T = B^T A^T \quad \text{Mörk ordning!}
\]

\[
(A + B)^T = A^T + B^T
\]

\[
(\lambda A)^T = \lambda A^T
\]

Ex: \[
A = \begin{pmatrix}
1 & 2 \\
-1 & 2 \\
\end{pmatrix},
\]

\[
B = \begin{pmatrix}
1 \\
-1 \\
\end{pmatrix}
\]

\[
AB = \begin{pmatrix}
1 & 2 \\
-1 & 2 \\
\end{pmatrix} \begin{pmatrix}
1 \\
-1 \\
\end{pmatrix} = \begin{pmatrix}
1 \\
1 \\
\end{pmatrix}
\]

\[
(AB)^T = \begin{pmatrix}
1 & 3 \\
\end{pmatrix}
\]

\[
B^T A^T = \begin{pmatrix}
-1 & 1 \\
\end{pmatrix} \begin{pmatrix}
1 & -1 \\
\end{pmatrix} = \begin{pmatrix}
-1 & 1 \\
\end{pmatrix}
\]

Bevis av k. Vi visa att AB=(B^T A^T)^T

Elementet på plats \(ij \) i \((B^T A^T)^T\) är elementet på plats \(ji \) i \(B^T A \) som är skalarpalustracian där rad \(j \) i \(B^T \) och kolomn \(i \) i \(A^T \)

\[
= (\text{kolonn } j \text{ i } B) \cdot (\text{rad } i \text{ i } A)
\]

= elementet på plats \(ij \) i \(AB \)
KAPITEL 7. EKV. SYSTEM Föreläsning 8 27/9/01

Ex: \[\begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix} \]

\[x_1, x_2, x_3, B_1, B_2 \]

(iii) \[AX = Y \] har för varje \(Y \) en endlig lösning \(X \)

\textbf{Bevis:} Om \(A = (a_{ij})_{n \times n} \) så har ekvationen

\[\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & 0 \\ a_{21} & a_{22} & \cdots & a_{2n} & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \]

Om (i) gäller, så existerar ett elementära radoperation ett system av typen \(RX = 0 \), där \(R = \begin{bmatrix} r_{11} & \cdots & r_{1n} \\ 0 & \ddots & 0 \\ 0 & \cdots & 0 \end{bmatrix} \)

Där alla diagonal element \(r_{ii} \neq 0 \) \((i=0,1, \ldots, n) \) \[X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \]

Ty ansats får vi oändligt många lösningar

\(r_{ii} = 0 \Rightarrow x_i \) (viss variabel)

Sats 3. (Om linjära ekv. system)

Anläg att \(X \) är en kvadratisk matris av typen \(n \times n \)

Då gäller:

(i) \(AX = 0 \) har bara den triviala lösningen \(X = 0 \)

(ii) \(AX = Y \) har för varje \(Y \) en endlig lösning \(X \)

(iii) \(AX = Y \) har för varje \(Y \) en endlig lösning \(X \)

\textbf{Bevis:} Om \(A = (a_{ij})_{n \times n} \) så har ekvationen

\[\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{bmatrix} \]

Härav följer att vi, via iterativa substitutioner kan bestämma

\[X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \]

Samlad radoperation utförd på systemet

\[AX = Y \]

gör att \(RX = \)

\[\begin{bmatrix} a_{11} & a_{12} & \cdots & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_n \end{bmatrix} \]

Härav följer att vi, via iterativa substitutioner kan bestämma

\[X = \]

\[\begin{bmatrix} X_1 \\ \vdots \\ X_n \end{bmatrix} \]
\[RX = Y \quad \Rightarrow \quad r_{1}x_{1} + \ldots + r_{n}x_{n} = \hat{y}_{n} \]

Def 5: Den kvadratiska matrisen \(A \) (ty n x n)

såges vara inverterbar om det finns en matris \(B \) så att:

\[AB = BA = I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

Vi skriver \(B = A^{-1} \)

Ex: \[A = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix}, \quad n = 5 \begin{pmatrix} 3 & -2 \\ 1 & 1 \end{pmatrix} \]

Då är \[AB = \frac{1}{5} \begin{pmatrix} 3 & -2 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 2 & 2 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \]

Måste nu visa att \(AB \) blir samma, alltså \(b \) skall parallellel om \(a \) som matrisen.

\[AB = \begin{pmatrix} 1 & 2 \\ -1 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \]

Alltså är \(B \) inversen till \(A^{-1} \).

OBS! Inversen är euklidigt bestämd!

Antag att \(f(AB) = BA = I \)

\[A^{-1}C = CA = I \]

\[D = (A)B = I = B = B \]

Om det funkar en invers, finns den bara en enda!

Ex: Løs ekvationssystemet

\[\begin{align*}
 x_{1} + 2x_{2} &= 7 \\
 -x_{2} + 3x_{2} &= -2
\end{align*} \]

Enligt tidigare uträkningar såväl att:

\[A^{-1} = \begin{pmatrix} 3 & 7 \\ -1 & 1 \end{pmatrix} \]

\[X = A^{-1}Y = \frac{1}{5} \begin{pmatrix} 3 & -7 \\ 1 & 1 \end{pmatrix} (\begin{pmatrix} 7 \\ 2 \end{pmatrix}) = \frac{1}{5} \begin{pmatrix} 14 \\ 1 \end{pmatrix} \]

Om man har inversen, kan det förutvisas inom felaktigt

Anm. att funktionsinom, om samt sys = löser.
Sats (Lemma 3)

Om A är kvadratisk, så gäller:

1. V är en vänsterinvers till A, om $VA = I$

2. H är en högerinvers till A, om $AH = I$

Exempel:

$$AX = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \quad AX = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad X = [x_1, x_2, \ldots, x_n]$$

Detta ger:

$$V(AX) = VI = V$$

Dvs. $V = X$

Dvs. $AV = VA = I$

Dvs. V är inversen till A!

"En högerinvers är även vänsterinvers!"

Bevis av 2: Antag att $AH = I$

Då är A en vänsterinvers till H, och enligt beviset av 1 ovan, så är då A också en högerinvers till H.

$AH = HA = I$ H är inversen till A.

För att avgöra om A är inverterbar, så lösar vi ekvationssystemet:

$$AX = I$$

"(dvs. undersöker om A har en högerinvers. Denna räknas, fly A kvadratisk.)"

Om denna ekvation har endast lösning X, så är A inverterbar, och $A^{-1} = X$.

$\Rightarrow A$ är inverterbar (iii)

Enligt Sats 3 finns då en endolig Lösning

Dill ekvationen: $AX = I$ (n st högerkast

Var och en get uppvis att H)
Bestäm inverkan till \(A = \begin{pmatrix} 1 & -2 & -3 \\ -2 & -4 & -1 \\ 3 & -3 & -5 \end{pmatrix} \) om den finns!

Los ecu sistemet:
\[AX = I \quad AX = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \] (om in ex för villkor, el. olikhetar \(\exists \) en invers)

\[
(\mathbf{A}^{-1}) = \begin{pmatrix} 1 & 2 & -3 \\ -1 & -1 & 1 \\ 1 & 0 & 0 \end{pmatrix}
\]

\[A \mathbf{x} = \mathbf{0} \quad \mathbf{x} \neq \mathbf{0} \]

Definition 9.1 Volym med tecken
\[\mathbf{v}(\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3) = \begin{vmatrix} \hat{\mathbf{a}}_1 & \hat{\mathbf{a}}_2 & \hat{\mathbf{a}}_3 \end{vmatrix} \] (Volymfunktionen)
\[\mathbf{v}(\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3) = \begin{cases}
\mathbf{w}(\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3) \quad \text{om } \hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3 \text{ är pos. orient.} \\
\mathbf{w}(\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3) \quad \text{om } -\mathbf{w} \text{ neg. orient.}
\end{cases}
\]

Anm: \[\mathbf{v}(\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3) = \mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3) \]

Kap 9 Determinanter

Lemma 1: \[\mathbf{v}(\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3) = \mathbf{v}(\lambda \hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3) = \lambda \cdot \mathbf{v}(\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3) \]

(iii) Om tre vektorer i \(\mathbf{v}(\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3) \) byter plats, så byter \(\mathbf{v} \) tecken.

(iv) Om två vektorer är lika, så är \(\mathbf{v}(\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3) = 0 \)

Bekr: Följer av: \[\mathbf{w}(\hat{\mathbf{a}}_1, \hat{\mathbf{a}}_2, \hat{\mathbf{a}}_3) = \mathbf{a}_1 \cdot (\mathbf{a}_2 \times \mathbf{a}_3) \]

Def: Area med tecken
Låt \(\hat{\mathbf{a}} \) & \(\hat{\mathbf{a}}_2 \) vara två vektorer som spänner upp en parallelogram \(\mathbf{a}_1, \mathbf{a}_2 \) finns
Låt \(\hat{\mathbf{a}} \) vara en för normalvektor till \(\hat{\mathbf{a}}_1 \), \(\| \hat{\mathbf{a}} \| = 1 \)
Lätt vara \(\bar{a}_1, \bar{a}_2 \) och \(\bar{a}_1, \bar{a}_2 \) är parallellam med \(\vec{a}_1, \vec{a}_2 \).

Sätt \(V_\text{par} = V_\text{parallelepiped} = V_\text{parallelogram} \).

Vi utgör \(\vec{e}_1 \) en normalvärk.

Byt av, andra volym och area.

\[
A = \begin{pmatrix}
 a_{11} a_{12} a_{13} \\
 a_{21} a_{22} a_{23} \\
 a_{31} a_{32} a_{33}
\end{pmatrix} = (A_1, A_2, A_3)
\]

Låt \(\vec{e}_1, \vec{e}_2, \vec{e}_3 \) vara en bas.

Sätt \(\vec{a}_1 = A_1 \vec{e}_1 + A_2 \vec{e}_2 + A_3 \vec{e}_3 \).

Vi undersöker \(V(\bar{a}_1, \bar{a}_2, \bar{a}_3) = V_\text{parallelepiped} \).

\[
V(\bar{a}_1, \bar{a}_2, \bar{a}_3) = a_{11} a_{22} a_{33} - a_{12} a_{21} a_{33} + a_{13} a_{21} a_{32} - a_{11} a_{23} a_{32} + a_{12} a_{23} a_{31} - a_{13} a_{22} a_{31}.
\]

Sannas regel!

\[
V(\bar{e}_1, \bar{e}_2, \bar{e}_3) = V(\vec{e}_1, \vec{e}_2, \vec{e}_3) = (\det A) \cdot V(\vec{e}_1, \vec{e}_2, \vec{e}_3) = V(\vec{e}_1, \vec{e}_2, \vec{e}_3) = (\vec{e}_1, \vec{e}_2, \vec{e}_3) = (\vec{e}_1, \vec{e}_2, \vec{e}_3).
\]

\(A = (A_1, A_2, A_3) \) läggs normalvärk i basen \(\vec{e}_1, \vec{e}_2, \vec{e}_3 \).
Följande:

\(\det A \neq 0 \iff \tilde{a}_1, \tilde{a}_2, \tilde{a}_3 \) är linjärt oberoende

\(\iff \) eliminering \(\det \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \)

\(\iff \) ax + y = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}

\(\iff A \) är inverterbar

Räkne regler

Sats 2 \(\det A^T = \det A \)

Bevis:

\[
\det A^T = \begin{vmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - \\
- a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31} = \det A^T
\]

Sats 3 \(A = (A_1, A_2, A_3) \)

\(\det (A_1 + A_2, A_3) = (\text{Volymsatsen och Lemma 1}) \)

\(= \det (A_1' ; A_2, A_3) + \det (A_1'', A_2, A_3) \)

Fortsätt

Sats 3

\(B \) \(\det (A_1, A_2, A_3) = \lambda \cdot \det (A) \)

\(C \) Om två kolonner bytts plats, så

\(\det (A_1, A_2, A_3) = \det (A) \)

\(= 0 \)

\(\begin{vmatrix} 2 & 1 & 2 \\ 1 & 3 & 1 \\ 1 & 7 & 0 \end{vmatrix} = 0 \)

\(\begin{vmatrix} 1 & 1 & 1 \\ 3 & 4 & 7 \\ 3 & 4 & 7 \end{vmatrix} = 0 \)

\(D \) \(\det (A_1 + cA_2, A_2, A_3) = \det (A) \)

55
Det A = summa av vektorer. Ett element finns varje rad, och varje kolonn.

Huvudsatsen: om en av förutsättningarna sägs vara sant, så är också alls sant.

Sats: produkt (8):

\[
\det(AB) = \det A \cdot \det B
\]

Revis: (Tillsammans med determinanter)

\[
\begin{bmatrix}
A & B & C
\end{bmatrix}
\]

Då är: \(C = A(B_1, B_2, B_3) = \det A_{ij} (AB_1, AB_2, AB_3)

Text: \(C = AB_i = (A_1, A_2, A_3; b_1, b_2, b_3) = b_1 A_1 + b_2 A_2 + b_3 A_3\)

Lät \(\vec{e}_i, \vec{e}_2, \vec{e}_3\) vara en bas, och sätt \(\vec{a}_i = \vec{a}_i \vec{e}_1 + \vec{a}_2 \vec{e}_2 + \vec{a}_3 \vec{e}_3\) (i = 1, 2, 3)

Och sätt \(\vec{c}_i = b_i \vec{a}_i + b_2 \vec{a}_2 + b_3 \vec{a}_3\)

\(= c_{i1} \vec{e}_1 + c_{i2} \vec{e}_2 + c_{i3} \vec{e}_3\)

\\

Vi är enligt volymatsen: geometriskt volymen som siktar ut ur vektorerna.

1. \(\text{Vol}(\vec{e}_1, \vec{e}_2, \vec{e}_3) = \det (\vec{e}_1, \vec{e}_2, \vec{e}_3)\)

 [Om \(\vec{a}_1, \vec{a}_2, \vec{a}_3\) ej är en bas = det är komplanar (spänner ej upp ett parallelepiped). Där är \(\vec{c}_1, \vec{c}_2, \vec{c}_3\) en linjär kombination av \(\vec{a}_1, \vec{a}_2, \vec{a}_3\), om även de är komplanar.

 Delta gör \(\text{Vol} = \text{Vol} \Leftrightarrow 0 = 0\)]

Volymatsen igen ger:

2. \(\text{Vol}(\vec{a}_1, \vec{a}_2, \vec{a}_3) = \det (\vec{a}_1, \vec{a}_2, \vec{a}_3)\)

Volymatsen igen ger:

3. \(\text{Vol}(\vec{c}_1, \vec{c}_2, \vec{c}_3) = \det (\vec{c}_1, \vec{c}_2, \vec{c}_3)\)

 \(= \det (\vec{a}_1, \vec{a}_2, \vec{a}_3)\)

 Det \(\det (\vec{a}_1, \vec{a}_2, \vec{a}_3) \neq 0\)

\[\text{Låt } A = (a_{ij}) \text{ till } n = 2, 3 \]

Under determinanter Dij till element aij är determinanten för den matris som erhålls ur A genom att styra radi \& kolonnj.

Ex: \(A = \begin{bmatrix} 1 & 4 & 7 \\ 3 & 2 & 1 \end{bmatrix} \)

\(\text{D}_{23} = \begin{vmatrix} 1 & 4 & 7 \\ 3 & 2 & 1 \end{vmatrix} = \begin{vmatrix} 14 \end{vmatrix} = \begin{vmatrix} 14 \end{vmatrix} \)

Vi kan utveckla en determinant längs 1:a kolonnen:
\[\det(A) = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{44}D_{11} - a_{21}D_{21} + a_{31}D_{31} \]

Men:

\[\det(A) = -\det(A_2A_1A_3) = \det(A_3A_1A_2) \]

Vilket ger att:

\[\det(A) = -a_{12}D_{12} + a_{22}D_{22} - a_{32}D_{32} = a_{13}D_{13} - a_{23}D_{23} + a_{33}D_{33} \]

Sats 9.6 Utvecklingsatsen:

Alla operationer gäller såväl för rader som för kolonner, dvs \(\det(A) = \det(A^t) \)

Ex: \[
\begin{vmatrix} 1 & 2 & 1 \\ 4 & 2 & 7 \\ 9 & 0 & 4 \end{vmatrix} = (utveckla längre kolonnen)
\]

\[
= 2(-1)^{12}D_{12} + 2(-1)^{22}D_{22} + 0(-1)^{32}D_{32} =
\]

\[
= -2\begin{vmatrix} 4 & 7 \\ 3 & 4 \end{vmatrix} + 2\begin{vmatrix} 1 & 1 \\ 3 & 4 \end{vmatrix} = -2(-5) + 2(1) = 12
\]

Utveckla längre den rad/kolonnen med flest nollor.

Faktorn \((-1)^{i+j}\) kallas för det algebraiska komplementet till \(A_{ij}\)

Def: Adjunkten \(\text{Till } A \)

\[
\text{adj}(A) = \begin{pmatrix} D_{11} & -D_{21} & D_{31} \\ -D_{12} & D_{22} & -D_{32} \\ D_{13} & -D_{23} & D_{33} \end{pmatrix}
\]

\[
[\text{adj } A]_{ij} = (-1)^{i+j}D_{ji}
\]

Sats 9.7: Om \(\det(A) \neq 0 \), så är \(A \) inverterbar, och:

\[
A^{-1} = \frac{1}{\det(A)} \cdot \text{adj } A
\]

Vidad multiplikeras in på ränte plats i matrisen

\((*) \) \(\text{adj } A \cdot A = A \cdot (\text{adj } A) = \det A \cdot I \)

Bevis: Följer av utvecklingsatsen.

\(\text{ÖNSKAR GÖR BEVISSET SJÄLIVET } ! \)

Ex: \[
A = \begin{pmatrix} 1 & 0 & 2 \\ -2 & 1 & 1 \\ 3 & 1 & 0 \end{pmatrix}
\]

\[
D_{11} = \begin{vmatrix} 1 \end{vmatrix} = 1, D_{21} = \begin{vmatrix} 0 & 2 \\ -2 & 1 \end{vmatrix} = -2, D_{31} = \begin{vmatrix} 1 \end{vmatrix} = 1
\]

\[
D_{12} = \begin{vmatrix} -2 & 1 \\ 3 & 1 \end{vmatrix} = -6, D_{32} = \begin{vmatrix} 1 & 2 \\ 3 & 0 \end{vmatrix} = 5
\]

\[
D_{13} = \begin{vmatrix} 1 & 0 \\ 3 & 1 \end{vmatrix} = -5, D_{23} = \begin{vmatrix} 0 & 2 \\ 3 & 1 \end{vmatrix} = 1, D_{33} = \begin{vmatrix} 1 \end{vmatrix} = 1
\]

59

60
$\textbf{adj}(A) = \begin{pmatrix} -1 & 2 & -2 \\ 3 & -6 & -5 \\ -5 & 1 & 1 \end{pmatrix}$

$\text{det}(A) = \left| \begin{array}{ccc} \text{fruklig} \\ \text{längsta} \\ \text{kolonn} \end{array} \right|_{2} = 0 \cdot (1) + 1 \cdot (6) - 1 \cdot 5 = -11$

$A' = \frac{-1}{11} \cdot \text{adj}(A)$

Cramers Regel Sats 9.8

Antag att $\text{det}(A) \neq 0$

Då gäller att elv. systemet $AX = Y$

$(A = (a_{ij})_{3 \times 3}, \quad X = \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}, \quad Y = \begin{pmatrix} y_{1} \\ y_{2} \\ y_{3} \end{pmatrix})$

här den entydiga lösningen

$x_{1} = \frac{\text{det}(Y A_{2} A_{3})}{\text{det}(A)}$, \quad x_{2} = \frac{\text{det}(A_{1} Y A_{3})}{\text{det}(A)}$, \quad x_{3} = \frac{\text{det}(A_{1} A_{2} Y)}{\text{det}(A)}$

(Kräver mer arbete än haussel.)

Ex: Bestäm x_{2} i lösningen till:

$AX = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

$x_{2} = \frac{-1}{11} \left| \begin{array}{ccc} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 3 & 2 & 0 \end{array} \right| = \frac{-49}{11} = \frac{49}{11}$

Bevis: $\text{det}(A) \neq 0 \Rightarrow A^{-1} \exists \Rightarrow$ entydig lösning $X = A^{-1}Y$

Dvs:

$Y = AX = (A_{1} A_{2} A_{3}) \begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix}$

Då är:

$\text{det}(Y A_{2} A_{3}) = \text{det}(x_{1} A_{1} + x_{2} A_{2} + x_{3} A_{3} A_{2} A_{3})$

= (elv. räkneregler) $= x_{1} \text{det}(A_{1} A_{2} A_{3}) + x_{2} \text{det}(A_{2} A_{2} A_{3})$

+$x_{3} \text{det}(A_{3} A_{2} A_{3})$

$
\left(\text{det}(A_{1} + A_{2} A_{3}) = \text{det}(A_{1} A_{2} A_{3}) + \text{det}(A_{1} A_{2} A_{3})\right)$

= teori på diggans 4.0.m nr 8 på listan.

uppg: 4.0.m om dagsomr. omkring.

Determinanter av Godtycklig Ordning

$A = (a_{ij})_{nxn}$

$\text{det}(A) = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \Sigma \pm a_{pi} p_{1} p_{2} \cdots p_{n}$

där $P = [p_{1}, p_{2}, \ldots, p_{n}]$ är en permutation av $[1, 2, 3, \ldots, n]$

Ex: $[3, 1, 2]$ är en permutation av $[1, 2, 3]$

Jämför parv., bygga om dekoder: $3 \rightarrow 1$ och $3 \rightarrow 2$
* Jamma perm: trogar o
* udda: - - - - -

- dekken om \(P = [P_1, \ldots, P_n] \) är jämna
- dekken om \(- \) udda.

Läs igenom bokeus förklaring.
Satserna kommer dock ej på tentan.

- Ex: \[
\begin{pmatrix}
1 & 2 & 3 \\
1 & 2 & 0 \\
3 & 4 & 1 \\
2 & 2 & 4
\end{pmatrix}
\sim
\begin{pmatrix}
-5 & -7 & 9 & -3 \\
1 & 2 & 0 \\
3 & 4 & 1 \\
-10 & -14 & 0 & -11
\end{pmatrix}
\]
Sats 9.12

- Utsöka, ta under determinant, under determinant av underdeterminant

\[A: B: R^\text{a} - \text{fordelningar} \quad \text{Mån. LV 5} \quad 2003/04/s \]

\[\mathbb{R}^n \quad \text{Komplexa tol}
\]

\[\mathbb{R}^2 = \{ \text{alla flikar} \} \]

\[= \{ (a, b) : a, b \in \mathbb{R} \} \]

\[\begin{pmatrix}
y \\
x
\end{pmatrix}
\]

\[(a, b) + (c, d) = (a + c, b + d) \]

\[\lambda (a, b) = (\lambda a, \lambda b) \]

\[\lambda \geq 0 \quad \text{absolutvärde:} \]

\[|(a, b)| = \sqrt{a^2 + b^2} \]

- Skalär produkt:

\[(a, b) \cdot (c, d) = (ac + bd) \]

\[\mathbb{R}^2 = \{ \text{alla flikar} \} = \]

\[= \{ x = (x_1, x_2, x_3) : x_i \in \mathbb{R} \} \]

\[+ \text{ komponentvis}! \]

\[\lambda x = (\lambda x_1, \lambda x_2, \lambda x_3) \]

\[\text{längd: } |x| = \sqrt{x_1^2 + x_2^2 + x_3^2} \]

- Skalär produkt:

\[x \cdot y = x_1y_1 + x_2y_2 + x_3y_3 \]

\[63 \]

\[64 \]
\[\mathbb{R}^n \{ \text{alla } n\text{-tuplar} \} = \{ \bar{x} = (x_1, x_2, x_3, \ldots, x_n) : x_i \in \mathbb{R} \} \]

\[(+ \{ \text{alla } 1\times n \text{ matriser} \}) \]

\[+ \bar{x} + \bar{y} = (x_1 + y_1, x_2 + y_2, \ldots, x_n + y_n) \]

\[\lambda \bar{x} = (\lambda x_1, \ldots, \lambda x_n) \]

Längd-absolutt vektorn:

\[|\bar{x}| = \sqrt{x_1^2 + x_2^2 + \ldots + x_n^2} \]

\[|\bar{x}| = 0 \implies \bar{x} = \mathbf{0} \]

Skalarprodukt:

\[\bar{x} \cdot \bar{y} = x_1y_1 + x_2y_2 + \ldots + x_ny_n \]

\[\bar{x} \cdot \bar{y} = 0 \text{ så säger vi att } \bar{x} \perp \bar{y} \]

Rökhnelagarna:

\[\bar{x} \cdot \bar{y} = y \cdot \bar{x} \quad \text{ och } \quad (\lambda \bar{x}) \cdot \bar{y} = \lambda (\bar{x} \cdot \bar{y}) \]

\[(\bar{x} + \bar{y}) \cdot \bar{x} + \bar{y} = \text{ "först med termen i summa"} = (x_1 + y_1)z_1 + x_1z_1 + y_1z_1 \]

\[= \bar{x} \cdot \bar{z} + \bar{y} \cdot \bar{z} \]

\[\bar{x} \cdot \bar{x} = |\bar{x}|^2 \geq 0 \text{ med likhet endast om } \bar{x} = \mathbf{0} \]

Sats:

\[\bar{x} \cdot \bar{y} = 0 \implies |\bar{x} + \bar{y}|^2 = |\bar{x}|^2 + |\bar{y}|^2 \quad \text{Pythagoras sats i } \mathbb{R}^n \]

2) \[|\bar{x} + \bar{y}| \leq |\bar{x}| + |\bar{y}| \quad \text{Talens olikheter i } \mathbb{R}^n \]

3) \[|\bar{x} \cdot \bar{y}| \leq |\bar{x}| |\bar{y}| \quad \text{Cauchy-Schwarz olikhet} \]

Tebent:

\[|\bar{x} + \bar{y}|^2 = (\bar{x} + \bar{y}) \cdot (\bar{x} + \bar{y}) = \bar{x} \cdot \bar{x} + \bar{x} \cdot \bar{y} + \bar{y} \cdot \bar{x} + \bar{y} \cdot \bar{y} = |\bar{x}|^2 + |\bar{y}|^2 \]

\[= |\bar{x}|^2 + |\bar{y}|^2 \]

2) \[|\bar{x} + \bar{y}|^2 = (\bar{x} + \bar{y}) \cdot (\bar{x} + \bar{y}) = \bar{x} \cdot \bar{x} + 2\bar{x} \cdot \bar{y} + \bar{y} \cdot \bar{y} \]

\[= |\bar{x}|^2 + |\bar{y}|^2 + 2\bar{x} \cdot \bar{y} \leq (\text{ent. (3)}) \]

\[\leq |\bar{x}|^2 + |\bar{y}|^2 + 2|\bar{x}| |\bar{y}| = (|\bar{x}| + |\bar{y}|)^2 \]

3) \[0 \leq |\bar{x} - \bar{y}|^2 = (\bar{x} - \bar{y}) \cdot (\bar{x} - \bar{y}) = |\bar{x} - \bar{y}|^2 \]

\[= \left(\begin{array}{c} \gamma(x) \\ \gamma(y) \end{array} \right) \text{er en andragadslikhet i } \alpha. \]

Vi seher att nullställen till \(\gamma(\alpha) \):

\[\gamma(\alpha_0) = 2 \alpha_0 |y|^2 - 2 \bar{x} \cdot \bar{y} = 0 \]

\[\alpha_0 = \frac{\bar{x} \cdot \bar{y}}{|y|^2} \]

Dvs:

\[0 \leq \gamma(\alpha_0) = |\bar{x}|^2 + \frac{(\bar{x} \cdot \bar{y})^2 |y|^2}{|y|^2} - 2 = \frac{(\bar{x} \cdot \bar{y})^2}{|y|^2}
\]

\[= |\bar{x}|^2 - \frac{|\bar{x} \cdot \bar{y}|^2}{|y|^2} \leq |\bar{x}|^2 - |\bar{x} \cdot \bar{y}|^2 \leq |\bar{x}|^2 \]

\[\mathbb{C} \overset{\text{alla } \alpha} \quad \square \]
Alla vinkelräta regler gäller!

Vi skriver: \((a, b) = a + ib\).

Komplexa tal: \(z = a + ib\), \(a, b \in \mathbb{R}\)

1. \(0 + z = z\)
2. \(z + u = u + z\)
3. \((z + u) + v = z + (u + v)\)
4. \(z \cdot w = w \cdot z\)
5. \(z \cdot 1 = z\)
6. \(z \cdot 0 = 0\)
7. \(z \cdot (u + v) = z \cdot u + z \cdot v\)
8. \(u \cdot z = 0\)
9. \(z \cdot (u + v) = z \cdot u + z \cdot v\)

Kvadratfel: \(-1\) döyper avkvadreraren

OBS! Vinkelräta regler gäller!
\[
\begin{align*}
|z + i| &= |z + i| = \sqrt{a^2 + b^2} = |z| = |a + bi| = |a - b| = |z - w| \\
|z - i| &= |z - i| = \sqrt{a^2 + b^2} = |z| = |a + bi| = |a - b| = |z - w| \\
|z + i| &= |z + i| = \sqrt{a^2 + b^2} = |z| = |a + bi| = |a - b| = |z - w| \\
|z - i| &= |z - i| = \sqrt{a^2 + b^2} = |z| = |a + bi| = |a - b| = |z - w| \\
\end{align*}
\]
POLÄR FORM:

arg(z) = θ är vinkeln mot positive reella axeln

\[r = |z| \]

Där är: \(\frac{b}{r} = \sin \theta \), \(\frac{a}{r} = \cos \theta \)

Dvs: \(a + ib = r \cos \theta + i r \sin \theta \)

\[= r (\cos \theta + i \sin \theta) \]
\[= r \cdot e^{i \theta} \]

Def: \(e^{i \theta} = \cos \theta + i \sin \theta \)

Sats:

\[e^{i \theta_1} \cdot e^{i \theta_2} = e^{i (\theta_1 + \theta_2)} \]

\[C = \{ \text{komplexa } z \text{ är } \mathbb{R}^2 \text{ multiplikation} \} \]

\[z = (a, b) = a + ib \]

\[w = (c, d) = c + id \]

\[z \cdot w = (a, b) \odot (c, d) \]

\[= (ac - bd, ad + bc) \]

Ger + ex Adler: \(i^2 = (0, 1) \odot (0, 1) = (-1, 0) = -1 \)

\[(a, 0) \odot (c, 0) = a \cdot c \]
\[= a \]
\[= c = a \cdot c \]

Bemärk: Räkna nog själva

\[z \cdot (a + w) = z \cdot u + z \cdot w \]

Bemärk: Sätt \(z = (a, b) \), \(u = (c, d) \), \(w = (e, f) \)

Sätt \(z \cdot (a + w) = (a, b) \odot (c + e, d + f) \)

\[= (ac + be - bd + af, be + af) \]

\[= (ac - bd, bc + ad) + (ae - bf, be + af) \]

multiplikation def

\[= (a, b) \odot (c, d) + (a, b) \odot (e, f) = z \cdot u + z \cdot w \]
Ex: Geometry, tolerance on 2 ± 1.

Tag: $u_0 = 2 - 1$, $n = 2$.

Cirkel med centrum $(2, 1)$ och med radie 2. Har ekvationen $z = 2 - (1 - 2i)\cdot i$.

Polar Form:

- $e^{\theta} = \cos \theta + i \sin \theta$
- $e^{-i\theta} = \cos(-\theta) + i \sin(-\theta) = \cos \theta - i \sin \theta$

Det:

- $\text{det} = e^{\theta} = e^{-i\theta} = e^{i\theta}$

Obs:

- $e^{i\theta} = e^{-i\theta}$
- n-heltal

$[\cos \Theta + i \sin \Theta] = e^{i\Theta}$

$e^z = e^{z_1 + z_2}$
$\frac{z_1}{z_2} = \frac{r_1}{r_2} \cdot \cos(\theta_1 - \theta_2)$

Def: $e^z = e^{a+bi} = e^a \cdot e^{ib}$

Ex: Vad händer om vi multiplicerar z med $i^? = (\frac{\pi}{2})$? (Här vinkeln $\frac{\pi}{2}$ mot θ och ϕ)

$z = re^{i\theta}$

$W = iz = 1 \cdot e^{-i\theta} \cdot re = r \cdot e^{i\frac{\pi}{2}}$

Ex: Bestäm nu formeln för $\sin^2 \theta$

Vi utnyttjar Eulers formler.

$\cos \theta = \frac{1}{2}(e^{i\theta} + e^{-i\theta})$

$\sin \theta = \frac{1}{2i}(e^{i\theta} - e^{-i\theta})$

Då är $\sin^2 \theta = \frac{1}{2} \sin(e^{i\theta} - e^{-i\theta}) = \frac{1}{8} \left(e^{i\theta} - 3(e^{i\theta})^2 - e^{-i\theta} + 3(e^{-i\theta})^2 - (e^{-i\theta})^3 \right) = \frac{1}{8} \left(e^{i\theta} - 3e^{i\theta} + 3e^{-i\theta} - e^{-i\theta} \right)^2 = \frac{1}{8} (\cos(3\theta) + i \sin(3\theta))$

Binomiska ekvationen

Betalta ekvationen:

$Z^n = W$ (binomisk ekvation av ordningen n)

Ex: $z^5 = 2i$

1) Skriv om z & i (w) på polar form.

$z = r e^{i\theta}$, $2i = 2e^{i\frac{\pi}{2}}$

2) De Notures formel ger:

$z^5 = (r e^{i\theta})^5 = r^5 e^{i5\theta}$

Dvs $z^5 = 2i$ är equivalent med $r^5 e^{i5\theta} = 2e^{i\frac{\pi}{2}}$

3) Denna ger $r^5 = 2$ och $r = 2$, och $\theta = \frac{\pi}{10} + \frac{m\pi}{5}$, m heltal.

Dvs $r = \sqrt[5]{2}$ (obs! Alltid positivt)

4) Lösningarna är:

$z_n = \sqrt[5]{2} \cdot e^{i(\frac{\pi}{10} + n\frac{2\pi}{5})}$

Regel i bunden 5-hornings längd av alla lösningar:

$5\sqrt[5]{2}$. De skiljer sig $\frac{2\pi}{5}$ från varandra.
Binomiska ekvationer

\[z^n = w \]

1) \[z = r e^{i\theta} \quad , \quad w = \Re e^{i\phi} \]

2) De Moivres formel ger:
\[r^n e^{i\theta} = \Re e^{i\phi} \]

3) \(\begin{cases} r^n = \Re \\ \theta = \phi + m \cdot 2\pi, \quad m = \text{hel tal} \end{cases} \)
\[r = \sqrt[n]{\Re} \quad , \quad \theta_m = \frac{\phi}{n} + m \cdot \frac{2\pi}{n} \]

4. Lösning: \(Z_m = \sqrt[n]{\Re} \cdot e^{i\theta_m} \), \(m = 0, 1, 2, \ldots, n-1 \)

Grafiskt sett fästa en regelbunden m-näring med radie \(r = \sqrt[n]{\Re} \)

Ex: \((1 + i)^2 = 2i \)

2/ kvadrat komplettera!

\((z - 1 - i)^2 - (1 + i)^2 + 3 + 6i = 0 \)
\(z^2 - (2i + 1)z \)
\((z - 1 - i)^2 = 2i - 3 - 6i = -1 - 4i \)
\(z = (1 + i) \pm \sqrt{1 + 4i} \)
\(= \text{vår sökning, ett komplex tal, vars kvadrat är lika med det som står under rottecknet.} \)
\(\text{(Detta skrivsätt är dock odefinierat.)} \)

3) Sätt \(z = x + iy \) (= u)

Då är: \((z - 1 - i)^2 = (x + iy)^2 = x^2 - y^2 + i2xy = -1 - 4i \)

4. (Vet, två tal lika om med både realdelarna...)

Identifiera realdel och imaginär del
\(\begin{cases} x^2 - y^2 = -3 \quad &|x^2 + y^2 = 5| \\ 2xy = -4 \quad &|\text{länge av } w| \\
\end{cases} \)
\((x + iy)^2 = \Re \quad |x - iy| = |w| \quad \Rightarrow x^2 + y^2 = |w| \)

2\(x^2 = -3 + 5 = 2 \), \(x = 1, x = -1 \)

(Använd ej detta för att beräkna y. Ty podulerar)
(Allt och ur ska bli negativ)
Insättning: $2xy = -4$ ger

$x = 1$, $-2y = -4$, $y = 2$, $x = 1$, $2y = -4$, $y = -2$

5. vi funner att

$Z_1 = x_1 + iy_1 + 1 + i = \begin{bmatrix} x_1 = 1 \\ y_1 = 2 \end{bmatrix} = -1 + 2i + 1 + i = 3i$

$Z_2 = x_2 + iy_2 + 1 + i = \begin{bmatrix} x_2 = 1 \\ y_2 = -2 \end{bmatrix} = 1 - 2i + 1 + i = 2 - i$

Divisionsalgoritmen

Ex.

$p(z) = z^2 - (2i)z^2 + (5-2i)z + 5i$
$q(z) = z^2 + 1$

$k(z) = \frac{z - (2i)}{z + (2-2i)} + \frac{5i}{z + 1}$

$r(z) = \frac{0}{(4-2i)z + 2 + 4i} = r(z) \text{ (rest)}$

$p(z) = \frac{z - (2i)}{z^2 + 1}$
$q(z) = z^2 + 1$

$k(z) + \frac{r(z)}{q(z)}$

$\text{grad } r(z) < \text{grad } q(z)$

(Andlig algoritm.
Varje steg reducerad grad p(z) med ell.)

Sats 1.4.2

Om $p(z)$ och $q(z)$ är två polynom ($\text{grad } q(z) \geq 1$)
så gäller att det finns polynom $k(z)$ och $r(z)$ så att

$\text{grad } r(z) < \text{grad } q(z)$

och

$p(z) = k(z) \cdot q(z) + r(z)$
Faktorization:

Om \(\alpha \in \mathbb{C} \) är en rot till \(p(z) = 0 \) (dvs \(p(\alpha) = 0 \)) så är \((z-\alpha)\) en faktor i \(p(z) \).
\[
p(z) = (z-\alpha) k(z)
\]

Bevis: Divisionssatsen ger (vi delar \(p(z) \) med \(z-\alpha \))
\[
p(z) = (z-\alpha) k(z) + r(z), \quad r(z) = \text{konstant} C
\]
gradtal < 1
\[
= (z-\alpha) k(z) + C.
\]

Tag \(z = \alpha \) \(\Rightarrow C = 0 \)

Problem: Hur en algebraisk ekvation alltid en lösning?
\[
p(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_1 z + a_0 = 0
\]

Har ekvationen ovan en lösning?

Ex: \(a_{n-1} = a_{n-2} = \ldots = a_1 = 0 \)
\[
\Rightarrow z^n = \frac{-a_0}{a_n}
\]
Denna lösning är binomisk och har precis \(n \) st lösningar.
(som ligger på en \(n \)-hörning)

(\(a_n, \ldots, a_0 \) kan vara komplexa värden)

Algebraiska Fundamentalsats

Ekv \((*)\) har minst en lösning
(om \(n \geq 1 \))

(vi behöver ej kunna bevisa den.)
(Även kunna,

Teoremsats (sats \(q \))

\((*)\) har precis \(n \) st lösningar, räknat med

- multiplicitet. Om \(\alpha_1, \alpha_2, \ldots, \alpha_m \) är rötter, så är
 \[
p(z) = q_n (z-\alpha_1)^{r_1} (z-\alpha_2)^{r_2} \ldots (z-\alpha_m)^{r_m}
 \]
 \(\alpha_i \) har multiplicitet \(r_i \) och \(r_1 + r_2 + \ldots + r_m = n \)

Ex: Polyom av gradtag 3
 \[
p(z) = (z-1)(z-2)(z-3) = (z-1)^3,
 \]

Har nollställe \(z = 2 \) med multiplicitet 2.

\[
\begin{array}{c|c}
 n & Z = 2 \end{array}
\]

Bevis av teoremsatsen:

Enligt algebraiska fundamentalsats finns en rot \(\alpha \) till \(p(z) = 0 \).

Faktorsatsen \(\Rightarrow \) Det finns polyom \(q_1(z) \) så att
\[
p(z) = (z-\alpha_1) q_1(z)
\]

OBS! Grad \(q_1 = n-1 \) (om \(n-1 \geq 1 \) så säger \(\in \mathbb{Z} \))

A.FS igen att det finns en rot \(\alpha_2 \) till \(q_1(z) = 0 \)
Faktorisera $q(z)$ så att $q(z) = (z-a_1)(z-a_2)...(z-a_n)$.

OBS! $p(z) = (z-a_1)q_1(z) = (z-a_2)q_2(z) = ... = (z-a_1)...(z-a_n)$.

Bevis: Induktion.

Polynom med reella koefficienter.

Ex: $p(z) = z^4 - z^3 + z^2 - 4z + 10$.

Sats:

Antag $p(z) = a_nz^n + a_{n-1}z^{n-1} + ... + a_1z + a_0$ och antag att $a_1, a_2, ..., a_n$ alla är reella.

Då gäller att:

1. $a = a + bi$ är en rot till $p(z) = 0$;
2. även $\bar{a} = a - bi$ är en rot till $p(z) = 0$.

Ex: $a = 1 + 2i$ är ett nollställe till $p(z)$.

Bestäm alla nollställen till $p(z)$.

Lös: $p(z)$ har reella koefficienter,

$
\Rightarrow \bar{a} = 1 - 2i$ är ett nollställe.

$
\Rightarrow \bar{a} \in \mathbb{R}$

$
\Rightarrow \bar{a} = a \text{ och } a \in \mathbb{R}$.

83

$x^2 - 2x - 5$ delar $p(z)$.

$
\Rightarrow \frac{z^2 + 2}{z^4 - 2z^3 + 7z^2 - 4z + 10} = \frac{z^2 - 2z + 5}{z^2 - 2z + 5}$

Dvs: $p(z) = (z^2 - 2z + 5)(z^2 + 2)$

$
\Rightarrow z^2 + 2 = 0$

$
\Rightarrow z = \pm \sqrt{2}i$

Svar: samtliga nollställena är $z = 1 + 2i$.

84

För beredelser:

$\bar{u}w = \bar{u}\bar{w}$, $\Rightarrow \bar{z}^k = \bar{z}^k$

$a = a$ om $a \in \mathbb{R}$ (a är realt)
Bevis av Sats A 10: (Visa att p(\(\bar{a}\)) = 0)

\[p(\bar{a}) = a_n \bar{a}^n + a_{n-1} \bar{a}^{n-1} + \ldots + a_1 \bar{a} + a_0 = \]

\[\left[\bar{a} = \frac{1}{2} \right] \]

\[= a_n \bar{a}^n + a_{n-1} \bar{a}^{n-1} + \ldots + a_1 \bar{a} + a_0 = \]

\[\begin{bmatrix} a_i \text{ reellt } \Rightarrow \bar{a}_i = a_i \end{bmatrix} = \]

\[= a_n \bar{a}^n + a_{n-1} \bar{a}^{n-1} + \ldots + a_1 \bar{a} + a_0 = \]

\[\sum_{i=0}^{n} a_i \bar{a}^i = a_n \bar{a}^n + a_{n-1} \bar{a}^{n-1} + \ldots + a_1 \bar{a} + a_0 = p(\bar{a}) = \bar{a} = 0 \]

Forledsats:

Varje polynom \(p(z)\) med reella koeficienter kan faktoriseras i en produkt av reella
2:a grader \& 1:a grader-polynom.

Kap.1 Analysbok: Hur hittar man en radikellrot?

\[n \begin{bmatrix} x = 1 + t \\
y = 2 + 2t \\
z = 3 + 3t \end{bmatrix}, t \in \mathbb{R} \]

\[? t_0 : (1 + t_0, 2 + 2t_0, 3 + 3t_0) \in \Gamma \] (Skissa in. i 3:es kv.)

\[(+t_0) + 2(2+t_0) + 2(3+3t_0) - 2 = 0 \]

\[q t_0 + 9 = 0 \Rightarrow t_0 = -1 \]

\[\text{Geplc mellan } n \text{ och } \bar{a} \]

\[\Rightarrow Q = n \cap \bar{a} \text{ har koordinaterna } (0,0,1) \]

: Ortogonala projektionen: (0,0,1)
\[\overrightarrow{O} = (1,2,3) + 2(\overrightarrow{Q} - \overrightarrow{P}) \]

\[\overrightarrow{PS} = (1,2,3) + 2(0,0,0,1) \]

\[= (1,2,3) + 2(-1,0,2,1) \]

\[= (-1,-4,-1) \]

ÄH: Mittpunktet Q till sträckan PS ligger i \(\Pi \).

\[S(1+t,2+2t,3+2t) \]

\[M = \overrightarrow{PS} = \left(1 + \frac{1+(1+t)}{2}, 2 + \frac{2+2t}{2} \right) = Q(0,0,1) \]

...

2. Beräkna volymen av den tetraeder som har högra punkterna \((1,1,2), (2,4,7), (0,1,4)\)
och \((1,0,4)\).

Volymen av tetraederen = \(\frac{1}{6} \) volymen av den parallelepiped som byggs på samma vektorer. (kantens)

\[V_{\text{parallelepiped}} = \left| \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \right| \]

\[\mathbf{u} = \overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA} = (1,3,5) \]

\[\mathbf{v} = \overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = (-1,0,2) \]

\[\mathbf{w} = \overrightarrow{AD} = \overrightarrow{OD} - \overrightarrow{OA} = (0,-1,2) \]

\[V_{\text{paralell}} = \left| \begin{array}{ccc} 1 & 1 & 5 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \\ \end{array} \right| = \left| \begin{array}{ccc} 1 & 3 & 5 \\ 0 & 2 & 1 \\ 0 & 1 & 0 \\ \end{array} \right| = 13 \]

ON-system:

\[= \left| 0+0+5-2-6 \right| = 13 \]

\[= 13 \]

\[V_{\text{tetraeder}} = \frac{1}{6} \cdot 13 = \frac{13}{6} \]

3. \(A = \begin{bmatrix} a+1 & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & 1 \end{bmatrix} \)

\(\exists A^{-1} \) Bestäm a så att:

\(A^{-1} = \begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} \)

\(\exists! A^{-1} \) För \(a = 2 \), lös \(AX = B \)

Lösning: \(\exists A^{-1} \rightarrow \det(A) \neq 0 \)

\(\det(A) = \left| \begin{array}{ccc} a+1 & 1 & 1 \\ 1 & a & 1 \\ 1 & 1 & 1 \end{array} \right| \)

Ej samma regel.
Under determinanter,
(gausse eliminera först)
(mål: få nollor inna elimination.)

det ≠ det 1 ≠ 1

(2)

-triangulär-

= ... = a(a-1)^2 ≠ 0 för alla E A^-1
⇒ ∃ A^-1 för a ≠ 0 och a ≠ 1

⇒ A^-1 för a = 0, och a = 1

E A^-1 ⇔ det(A) ≠ 0

E A^-1 ⇒ A A^-1 = E ⇒ det(A) det(A^-1) = 0

⇒ det(A) ≠ 0

Kvadratisk matris, alla adjunkter under huvuddiagonalen lika, = 10 st. 3x3-determinater.

Jacobi metod:

Sett att o0, a ≠ 1, groin adjunkt med a

Adj = (-1) 1

Dif F vi har 16 2x2-determinater

Symmetrisk matris, alla adjunkter under huvuddiagonalen lika, = 10 st. 3x3-determinater.
Om en A^-1 existerar, upptäcks det i studiet: (A | E)

Vi får en nullrad/er ⇒ går ei att invertera.

\[a = 2 \neq 0, 1 \]

\[X = A^{-1} B \]

\[A = \begin{pmatrix}
\frac{1}{2} & 0 & 0 & -\frac{1}{2} \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
-\frac{1}{2} & 1 & -1 & \frac{1}{2}
\end{pmatrix} \quad X = \begin{pmatrix}
1 & 2 & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix} = 4 \times 4 -{\text{matrix}} \quad 4 \times 2 -{\text{matrix}} \]

```
\[
\begin{pmatrix}
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{pmatrix} = n(-1)
\]
```

Swärlogisk förståelse.

Lemma

\[u \cdot r = v \cdot r \quad \forall r \quad \Rightarrow u = v \]

Bevis:

\[\forall r \quad u = v \quad \Rightarrow u \cdot r = v \cdot r \quad \forall r \]

\[\Rightarrow u \cdot r - v \cdot r = 0 \quad \Rightarrow (u-v) \cdot r = 0 \quad \forall r \]

\[(\forall r) \quad (u-v \perp r \forall r) \]

\[\text{konsekvens: good} \]

\[\text{Välj: } r = u-v \Rightarrow (u-v) \cdot (u-v) = 0 \]

\[(u-v)(u-v) = |u-v|
\]

\[|u-v| = 0 \quad \Rightarrow u-v = 0 \]

\[\Rightarrow u = v \]

[Diagram: Triangular matrix]

\[14/1 - 2000 \quad Tolkning \]

5. \[\begin{pmatrix}
1 & 1 & \cdots & 1 \\
2 & 0 & \cdots & 1 \\
2 & 1 & \cdots & 1 \\
2 & 1 & \cdots & 1
\end{pmatrix} (-1) \]

\[\begin{pmatrix}
1 & 1 & \cdots & 1 \\
1 & -1 & \cdots & 0 \\
0 & 0 & \cdots & 1 \\
1 & 0 & \cdots & 0
\end{pmatrix} \]

\[\text{Vill få triangulär matrix} \]

\[A_n = (-1)^{n+1} \cdot A_{n-1} + 1 \cdot (-1)^n \cdot D \]

\[D = \begin{pmatrix}
1 & 1 & 0 & \cdots & 0 \\
1 & 0 & -1 & \cdots & 0 \\
0 & 0 & \cdots & 1 \\
1 & 0 & \cdots & 0 \\
1 & 0 & \cdots & 0
\end{pmatrix} \]

\[\text{radbrytning ger triangulär form, } (-1)^{n-1} \]

91

92