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Total number of points: 30. To pass, at least 12 points are needed
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Figure 1: The chain for question 1.

1. (4 points) Consider the discrete-time Markov chain with state space {1, 2, 3} and transition
probabilities given in Figure 1.

(a) What is the limiting distribution for this chain?
(b) Write down its transition matrix, and compute its fundamental matrix F.
(c) If a chain starts in state 1, what is the expected number of steps it will be in state 3?

2. (4 points) Consider an ergodic discrete-time Markov chain with a finite state space, transi-
tion matrix P = [Pi j], and stationary distribution v.

(a) If we simulate k independent Markov chains, with each chain having a different start-
ing value at X0, what is the probability that all chains are in the same state after n
steps, as n→ ∞?



(b) Describe a way to set up the simulation so that each chain is still a realization from the
Markov chain with the given transition matrix, and each chain starts with a different
starting value, but the probability that all chains are in the same state after n steps
approaches 1 as n→ ∞.

(c) Describe a type of sampling using the simulation method of (b), and explain why this
is useful in this sampling type.

3. (3 points) Let X be a random variable with values in the set {0, 1, 2, . . . } and let G(s) be its
probability generating function. The variance of X can be expressed in terms of derivatives
of G(s) evaluated at specific values for s. Derive the correct formula.

4. (4 points) Assume {Nt}t≥0 is a Poisson process with parameter λ. Assume each arrival is
independently marked with M (with probability p) or with F (with probability 1 − p). Let
N(M)

t and N(F)
t be the number of events of type M or F, respectively, in the interval [0, t].

Prove that N(M)
t and N(F)

t are independent random variables and derive their distributions.

5. (5 points) Define a discrete-time continuous-valued Markov chain X0, X1, X2, . . . , by defin-
ing X0 ∼ Normal(0, 1) and for k = 1, 2, . . . ,

Xk ∼ Normal(aXk−1, 1)

where a is a real parameter.

(a) Assume we use the prior a ∼ Normal(1, 1) for a. Find the posterior distribution for a
given observations x0 and x1 of X0 and X1, respectively.

(b) Prove that the posterior for a given observations of X0, X1, . . . , Xk is normal. You do
not need to derive the parameters of the distribution.

6. (5 points) Consider a continuous-time Markov chain on the state space {1, 2, 3, 4}. The
transition rates between the states are indicated in the transition rate graph in Figure 2.

(a) Is this chain ergodic? Why/why not?

(b) Write down the (infinitesimal) generator matrix Q for this chain.

(c) Let v = (v1, v2, v3, v4) be the probability vector representing the staionary distribution
for the continuous-time Markov chain. Write down four linear equations that the
numbers v1, v2, v3, v4 need to satisfy, and which determine these numbers uniquely.
(You do not need to solve the equations).

(d) Write down the transition matrix for the embedded Markov chain.

(e) Let w = (w1,w2,w3,w4) be the probability vector representing the stationary distri-
bution for the discrete embedded Markov chain. Write down four linear equations
that the numbers w1,w2,w3,w4 need to satisfy, and which determine these numbers
uniquely. (You do not need to solve the equations).
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Figure 2: The chain for question 6.

7. (5 points) Assume {Bt}t≥0 is the Brownian motion stochastic process.

(a) Find the distribution of B1 + B2 + B3.

(b) Give the definition of a Gaussian process (as defined in Dobrow).

(c) Let a > 0. For n = 1, 2 . . . ,, let Mn be the event consisting of those t > 0 such that
there exists t1 < t2 < · · · < tn < t with Bti = a for i = 1, . . . , n. Let Tn be the largest t
smaller than or equal to all t ∈ Mn. Compute the distribution of T100 − T1.



Appendix: Some probability distributions

The Beta distribution
If x ≥ 0 has a Beta(α, β) distribution with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial(n, p) distribution, with n a positive integer and 0 ≤ p ≤ 1,
then the probability mass function is

π(x | n, p) =

(
n
x

)
px(1 − p)n−x.

The Exponential distribution
If x ≥ 0 has an Exponential(λ) distribution with λ > 0 as parameter, then the density is

π(x | λ) = λ exp(−λx)

and the cumulative distribution function is

F(x) = 1 − exp(−λx).

The Gamma distribution
If x > 0 has a Gamma(α, β) distribution, with α > 0 and β > 0, then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has a Poisson(λ) distribution, with λ > 0, then the probability mass function
is

e−λ
λx

x!
.
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1. (a) As state 2 is absorbing while the other states are transient, the limiting distribution is
(0, 1, 0).

(b) The transition matrix is P =

 0 0.3 0.7
0 1 0

0.6 0.4 0

. The part concerning the transient states

is Q =

[
0 0.7

0.6 0

]
and thus the fundamental matrix is

F = (I − Q)−1 =

[
1 −0.7
−0.6 1

]−1

=
1

1 − 0.6 · 0.7

[
1 0.7

0.6 1

]
=

[
1.7241 1.2069
1.0345 1.7241

]
.

(c) This can be read of the fundamental matrix: The answer is 1.2069.

2. (a) As n → ∞ the distribution of each chain will approach the stationary distribution
v. Let us write s for the number of states in the state space. We can compute the
probability p that the k chains have the same state by summing over the possible
states and computing the probability that each chain has this state. Letting n → ∞,
we get

p =

s∑
i=1

vk
i .

(b) One may use “coupling”: Pick an ordering of the states in the state space and name
the states 1, . . . , s. Define a function f sending pairs (i, u), where u is a real number
in [0, 1] and i is a state, to a new state, as follows:

f (i, u) = max

 j :
j−1∑
r=1

Pir ≤ u

 .
One may see that P( f (i,U) = j) = Pi j when U is a random variable with a uniform
distribution on [0, 1]. Thus, if a chain is at state i, one may choose its state in the next
step according to f (i,U) where U ∼ Uniform(0, 1).
The values of the k chains are now constructed by using, for each step m, the same
random number Um for all the chains. Each chain will then be a Markov chain with
the given transition matrix, while the chains will not be independent, they will be
“coupled”.



It should be clear, that, if two chains have the same state at a certain step, they will
continue to have the same state at all following steps. Furthermore, although we do
not prove this rigorously, it should be clear that unless all rows of the transition matrix
are euqal, there exist some pairs of states with a non-zero probability that two chains
in these two states at one step will have the same state at the following step. Using
ergodicity, it may be shown that as n→ ∞, all chains will end up in the same state.
(Note that our coupling will not work if all the rows of the transition matrix are equal.
However, in this case, all the rows are equal to v, all chains converge immediately to
the limiting distribution, and all questions about convergence are rather uninterest-
ing).
(Note: A fairly short explanation would give students full points for this subquestion).

(c) Perfect sampling uses the simulation method of (b). In Perfect sampling, one decides
on a certain number of steps n, and then simulates s chains, all with different starting
states, for n steps, using coupling as above. If all the chains are in the same state at
the final step, one knows that this step is a sample from the stationary distribution.
For this to happen with a reasonable probability, one needs the effect of (b), i.e., that
the chains tend to end up in the same state.

3. We have

G(s) = E
[
sX

]
G′(s) = E

[
XsX−1

]
G′′(s) = E

[
X(X − 1)sX−2

]
so that G′(1) = E [X] and G′′(1) = E [X(X − 1)] = E

[
X2

]
− E [X]. Thus

Var [X] = E
[
X2

]
− E [X]2

= E
[
X2

]
− E [X] + E [X] − E [X]2

= G′′(1) + G′(1) −
(
G′(1)

)2 .

4. The joint probability mass function for N(M)
t and N(F)

t can be derived as

P(N(M)
t = i,N(F)

t = j)
= P(N(M)

t = i,Nt = i + j)
= P(N(M)

t = i | Nt = i + j)P(Nt = i + j)

=
(i + j)!
i! · j!

pi(1 − p) je−λ
λi+ j

(i + j)!

= e−λ
1
i!

(pλ)i 1
j
((1 − p)λ) j

=

[
e−λp 1

i!
(pλ)i

] [
e−λ(1−p) 1

j!
((1 − p)λ) j

]
= Poisson(i; λp) · Poisson( j; λ(1 − p))



From this it follows that the marginal distribution for M(M)
t is Poisson(λp) and that the

marginal distribution for M(F)
t is Poisson(λ(1 − p)), and that the two random variables are

independent.

5. (a) We get

π(a | x0, x1) ∝a π(x0, x1 | a)π(a)
= π(x1 | a, x0)π(a)
= Normal(x1; ax0, 1) · Normal(a; 1, 1)

∝a exp
(
−

1
2

(x1 − ax0)2
)

exp
(
−

1
2

(a − 1)2
)

= exp
(
−

1
2

[
a2x2

0 − 2ax0x1 + x2
1 + a2 − 2a + 1

])
∝a exp

(
−

1
2

[
(x2

0 + 1)a2 − 2a(x0x1 + 1)
])

∝a exp
−1

2
(x2

0 + 1)
(
a −

x0x1 + 1
x2

0 + 1

)2
so a ∼ Normal

(
x0 x1+1
x2

0+1 ,
1

x2
0+1

)
.

(b) In the above computation a had the prior Normal(1, 1), but it should be clear that
an entirely similar computation would result in a normal posterior also for any other
normal prior for a. Furthermore, the posterior for a given a sequence x0, x1, . . . , xk of
observations for the variables X0, X1, . . . , Xk can be computed by sequentially using
each observation as data, and the posterior for a from previous computations as as
prior for a. The posterior is then at each stage normal, so, by induction, the final
posterior, given all observations, is also normal.

6. (a) The chain is ergodic as there are non-zero transition rates for example from 1 to 2 to
4 to 3 and back to 1, and thus only one communication class.

(b)

Q =


−4 3 1 0
0 −2 0 2
3 1 −9 5
0 0 2 −2

 .
(c) We must have

∑4
i=1 vi = 1 and vQ = 0. The four columns of Q give rise to 4 dependent

equations. Selecting 3 of these, we get, for example,

1 = v1 + v2 + v3 + v4

0 = −4v1 + 3v3

0 = 3v1 − 2v2 + v3

0 = v1 − 9v3 + 2v4



(d)

P =


0 3

4
1
4 0

0 0 0 1
3
9

1
9 0 5

9
0 0 1 0

 .
(e) We must have

∑4
i=1 wi = 1 and w(I − P) = 0. The four columns of I − P give rise to 4

dependent equations. Selecting 3 of these, we get, for example,

1 = w1 + w2 + w3 + w4

0 = w1 −
3
9

w3

0 = −
3
4

w1 + w2 −
1
9

w3

0 = −w2 −
5
9

w3 + w4

7. (a) We can write

B1 + B2 + B3 = B1 + 2B2 + B3 − B2 = 3B1 + 2(B2 − B1) + B3 − B2.

where each of B1, B2−B1, and B3−B2 are independent and normally distributed with
expectation zero. Thus the sum is normally distributed with expectation zero, and
variance

Var [B1 + B2 + B3] = Var [3B1 + 2(B2 − B1) + B3 − B2]
= Var [B1] + Var [2(B2 − B1)] + Var [B3 − B2]
= 9 Var [B1] + 4 Var [B2 − B1] + Var [B3 − B2]
= 9 Var [B1] + 4 Var [B1] + Var [B1]
= 9 + 4 + 1 = 14.

Thus
B1 + B2 + B3 ∼ Normal(0, 14).

(b) A Gaussian process {Xt}t≥0 is a continuous-time stochastic process with the prop-
erty that for all n = 1, 2, . . . and 0 ≤ t1 < t2 < · · · < tn, the random variables
Xt1 , Xt2 , . . . , Xtn have a multivariate Normal distribution.

(c) Note that T1 is the first hitting time for a. This is a stopping time, and thus the
stochastic process {Xt}t≥0 defined by

Xt = BT1+t − BT1

is Brownian motion. This means that it has infinitely many zeroes in the interval (0, ε)
for any ε > 0. Thus, for any n > 0 there is infinitely many sequences T1 < t1 < t2 <
· · · < tn < T1 + ε such that Bti = a for i = 1, . . . , n. This shows that T100 = T1, i.e., its
distribution is concentrated in the value 0.


