
Petter Mostad
Applied Mathematics and Statistics
Chalmers and GU

MVE550 Stochastic Processes and Bayesian Inference

Exam April 5, 2024, 8:30 - 12:30
Examiner: Petter Mostad will be available by phone 031-772-3579

and will visit the exam at 9:30 and 11:30.
Allowed aids: Chalmers-approved calculator

Total number of points: 30. At least 12 points are needed to pass.
See appendix for some information about some probability distributions.

All answers need to be explicitly computed or explicitly argued for.
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Figure 1: The undirected weighted graph used in question 1.

1. (8 points) Consider the Markov chain defined as the random walk on the weighted undi-
rected graph of Figure 1.

(a) Draw the transition graph for the Markov chain, and write down its transition matrix
P.

(b) Which of the states are recurrent, and which are transient?

(c) Does the Markov chain have a limiting distribution? If so, compute it.

(d) Prove or disprove that the Markov chain is time reversible.

(e) If the chain starts in node 1, what is the probability that it visits node 5 before it visits
node 6? You may express your result as an equation involving numerical matrices
and matrix algebra.



2. (9 points) A process with repeating events is modelled with a Poisson process with inten-
sity parameter λ events per minute. The process is monitored over 10 minutes, and the
waiting time in minutes for the first event, between the first and the second event, between
the second and third event, and between the third and fourth event, is observed as

x1 = 0.7, x2 = 4.7, x3 = 3.9, x4 = 0.5

respectively. The sum of these waiting times is S = 9.8 minutes. No more events occur
during the 10 monitored minutes. Below, we use these observations and Bayesian statistics
to learn about λ:

(a) Use the four observed waiting times to obtain a function of λ proportional to a poste-
rior for λ, using 1/λ as a prior.

(b) Use the single observation that exactly 4 events happened during the 10 monitored
minutes to obtain a function of λ proportional to a posterior for λ, using 1/λ as a
prior.

(c) If you have obtained different posteriors in (a) and (b), can you explain this differ-
ence? Is there a way to adjust the way computations are made, to make the results
identical?

(d) Using the information and the computational methods above, compute the expected
arrival time of the fifth event.
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Figure 2: The configuration of the Ising model used in question 3.

3. (6 points) Recall the Ising model: A configuration σ is a vector consisting of values +1 or
-1, one value for every node in a grid. We use the 4 × 4 grid of Figure 2, where 9 values
are +1 and 7 values are -1. For nodes v and w in the grid, we say that they are neighbours,



written v ∼ w, if the distance between them in the grid is equal to the minimal distance
between any nodes in the grid (so nodes have a maximum of 4 neighbours). The energy of
a configuration is defined as

E(σ) = −
∑
v∼w

σvσw

where σv and σw are the values (+1 or -1) of σ at nodes v and w respectively. For a
parameter β > 0 we define a probability mass function on the set of possible configurations
by

π(σ) ∝σ exp(−βE(σ)).

(a) What is meant by Gibbs sampling in general? In the particular case of the model
above, how would Gibbs sampling be performed?

(b) Assume one is using Gibbs sampling on the model above, and that the current config-
uration is shown in Figure 2. If the next step in the Gibbs sampling may change the
stateσv of the node v in the upper left hand corner of the grid, compute the probability
that σv is indeed changed in the next step.

(c) What is meant by perfect sampling in general? In the special case of the model above,
outline (no details reqired) how it would work.

4. (3 points) Prove the Equation P(t)P(s) = P(t + s) for the transition function matrix for a
continuous-time discrete state space Markov chain X. Use the definition of P(t), not the
theory for exponential matrices. Mention the properties of continuous-time discrete state
space Markov chains that you use in your proof.

5. (2 points) What is the definition of a birth-and-death process? Prove that a birth-and-death
process is time reversible.

6. (2 points) If Bt is Brownian motion, compute the distribution of B2 + 3B3 + B5.



Appendix: Some probability distributions

The Beta distribution
If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =
(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)
Γ(α)Γ(β)Γ(n + α + β)

.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =
(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

pα1−1
1 pα2−1

2 · · · pαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).

The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.



The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β). The Gamma(α, β) distribu-
tion has expectation α

β
and variance α

β2 .

The Inverse Gamma distribution
If x > 0 has an Inverse Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
x−α−1 exp(−β/x).

We write x | α, β ∼ Inverse-Gamma(α, β) and π(x | α, β) = Inverse-Gamma(x;α, β). If x ∼
Gamma(α, β) then 1/x ∼ Inverse-Gamma(α, β). The Inverse-Gamma(α, β) distribution has ex-
pectation β

α−1 and variance β2

(α−1)2(α−2) .

The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Negative Binomial distribution
A stochastic variable x taking on as possible values any nonnegative integer has a Negative
Binomial distribution if its probability mass function is given by

π(x | r, p) =
(
x + r − 1

x

)
· (1 − p)x pr =

Γ(x + r)
Γ(x + 1)Γ(r)

(1 − p)x pr

where r > 0 and p ∈ (0, 1) are parameters.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).



The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ). The Poisson distribution has expecta-
tion λ and variance λ.
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Figure 1: The transition graph answering question 1a.

1. (a) We get Figure 1 above, and

P =



0 1/3 2/3 0 0 0
1/2 0 0 1/2 0 0
1/3 0 0 1/3 1/3 0
0 1/10 2/10 4/10 0 3/10
0 0 2/3 0 0 1/3
0 0 0 3/4 1/4 0


.

(b) All are recurrent, as can be seen from the transition graph. It is also true that all states
are recurrent in a random walk on any weighted undirected connected graph.

(c) Any random walk on a weighted undirected graph has a limiting distribution. By
adding the weights of the edges going out of each node, we get that the limiting
distribution is

π =
1
C

(3, 2, 6, 10, 3, 4)

where
C = 3 + 2 + 6 + 10 + 3 + 4 = 28.



(d) Any Markov chain constructed as a random walk on a weighted undirected graph is
time reversible.

(e) To solve this question, we change the Markov chain to make both 5 and 6 absorbing.
The transition matrix of the new chain is[

Q R
0 I

]
where

Q =


0 1/3 2/3 0

1/2 0 0 1/2
1/3 0 0 1/3
0 1/10 2/10 4/10


and

R =


0 0
0 0

1/3 0
0 3/10

 .
The probability of starting in state number 1, 2, 3 or 4 and ending in state 5 or 6 can
now be computed as the elements of the matrix

FR = (I − Q)−1R

Thus the probability of starting in state 1 and being absorbed in state 5 is given by[
1 0 0 0

]
(I − Q)−1R

[
1
0

]

=
[
1 0 0 0

] 
1 −1/3 −2/3 0
−1/2 1 0 −1/2
−1/3 0 1 −1/3

0 −1/10 −2/10 6/10


−1 

0
0

1/3
0


= 0.533333

2. (a) The waiting times are Exponentially distributed with parameter λ. The posterior for
λ is proportional to the likelihood times the prior, so

π(λ | (x1, x2, x3, x4) ∝λ π(x1, x2, x3, x4 | λ)π(λ)

=

4∏
i=1

Exponential(xi | λ) ·
1
λ

= λ4
4∏

i=1

exp(−λxi) ·
1
λ

= λ3 exp(−Sλ)

It can be noted that this function is proportional to the Gamma density with parame-
ters 4 and S .



(b) The number of events after 10 minutes has a Poisson(10λ) distribution. Thus the
posterior for λ becomes

π(λ | 4 events during 10 mins) ∝λ π(4 events during 10 mins | λ)π(λ)

= Poisson(4; 10λ) ·
1
λ

= exp(−10λ)
(10λ)4

4!
·

1
λ

∝λ λ
3 exp(−10λ)

It can be noted that this function is proportional to the Gamma density with parame-
ters 4 and 10.

(c) The reason for the difference is that the first computation does not take into accout
the extra information that there were no events during the last 0.2 monitored minutes.
In fact, given λ, the probability that there are no events during 0.2 minutes can be
computed using either the cumulative distribution for the Exponential(λ), yielding
exp(−0.2λ), or that we have zero observations for a Poisson(0.2λ) distribution, also
yielding exp(−0.2λ). In either case, the extra factor in the likelihood of solution (a)
makes the posterior identical to the posterior of solution (b).

(d) We can compute the waiting time for a new observation using the law of total expec-
tation, and using that the expected value of an exponential distribution with parameter
λ is 1/λ:

E(waiting time) = E
(
E
(
waiting time | λ

))
= E(1/λ).

We have found above that λ has posterior distribution Gamma(4, 10), so 1/λ has
posterior distribution Inverse-Gamma(4, 10), which according to the Appendix has
expectation 10/3 = 3.333.

Note that we know that no new events occur between 9.8 and 10 minutes. The ex-
pected waiting time after 10 minutes is 3.333 minutes. Thus the expected time for
the next observation to occur is at 13.333 minutes.

3. (a) Gibbs sampling can be described as a version of the Metropolis Hastings algorithm
where the proposal function proposes a change in only one variable at a time. The
proposal distribution is then the conditional distribution give the current value of all
other variables, and the acceptance probability is 1.

In the Ising model example, one would cycle through each of the nodes in the grid and
simulate either +1 or -1 as a new value at that node using the conditional distribution
given the values at all the other nodes.

(b) As currently σv = +1, we need to compute the probability of σv being -1 in the
conditional distribution given σ−v, i.e., the current configuration of all other nodes.



We get

π(σv = −1 | σ−v) =
π(σv = −1, σ−v)
π(σ−v)

=
π(σv = −1, σ−v)

π(σv = −1, σ−v) + π(σv = +1, σ−v)

=
exp (−βE(σv = −1, σ−v))

exp (−βE(σv = −1, σ−v)) + exp (−βE(σv = +1, σ−v))

=
exp (−β((−1)(+1) + (−1)(+1)))

exp (−β((−1)(+1) + (−1)(+1))) + exp (−β((+1)(+1) + (+1)(+1)))

=
exp(2β)

exp(2β) + exp(−2β)

=
1

1 + exp(−4β)
.

(c) In general, perfect sampling is an algorithm which guarantees that the value at the last
step of the Markov chain of a pre-defined length is indeed sampled from the limiting
distribution. In the Ising model example, one would simulate a chain of maximal
configurations, starting with all +1 values, and a chain of minimal configurations,
starting with all -1 values, using coupled Gibbs simulations, so that steps where nodes
have identical neighbours would get identical outcomes. If the two simulations have
converged after a predetermined number of steps, the sample is perfect.

4. We get for the i j term of the matrix P(t + s)

P(t + s)i j = Pr[Xt+s = j | X0 = i]

=
∑

k

Pr[Xt+s = j, Xt = k | X0 = i]

=
∑

k

Pr[Xt = k | X0 = i] Pr[Xt+s = j | Xt = k, X0 = i]

=
∑

k

Pr[Xt = k | X0 = i] Pr[Xt+s = j | Xt = k]

=
∑

k

P(t)ik Pr[Xs = j | X0 = k]

=
∑

k

P(t)ikP(s)k j

= (P(t)P(s))i j

which completes the proof. In the 4th line we use the Markov property, and in the 5th line
we use the stationary increments property.

5. A birth-and-death process is a continuous time Markov process whose state space is the
non-negative integers and where the only transitions occur between adjacent integers. As
the transition graph is then a line, it is also a tree, and thus the process is time reversible.



6. We may write

B2 + 3B3 + B5 = B2 + 4B3 + B5 − B3 = 5B2 + 4(B3 − B2) + B5 − B3.

As

B2 ∼ Normal(0, 2)
B3 − B2 ∼ Normal(0, 1)
B5 − B3 ∼ Normal(0, 2)

and these random variables are independent, we can compute the variance of their linear
combination as

Var(5B2 + 4(B3 − B2) + B5 − B3) = 52 · 2 + 42 · 1 + 2 = 68.

As the sum of normal variables is normal, and as the expectation is linear, we get

B2 + 3B3 + B5 ∼ Normal(0, 68).


