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MVE550 Stochastic Processes and Bayesian Inference

Exam January 8, 2024, 8:30 - 12:30
Examiner: Petter Mostad will be available by phone 031-772-3579

and will visit the exam at 9:30 and 11:30.
Allowed aids: Chalmers-approved calculator

Total number of points: 30. At least 12 points are needed to pass.
See appendix for some information about some probability distributions.

All answers need to be explicitly computed or explicitly argued for.

1. (6 points) Consider a Branching process with offspring distribution X, where X = Y − 1
and Y ∼ Geometric(p), with 0 < p < 1.

(a) Compute the expectation µ and the variance σ2 of the offspring distribution.

(b) Find the probability of extinction as a function of p.

(c) Compute the variance of Z2, the size of the population after 2 generations, by condi-
tioning on Z1, the size of the population after 1 generation.

X1 XnX3X2

YnY3Y2Y1

Figure 1: The hidden Markov model used in question 2.

2. (6 points) Consider the Hidden Markov Model illustrated in Figure 1. The random vari-
ables X1, X2, . . . have possible values 1,2,3, or 4. The random variables Y1,Y2, . . . have



non-negative real values1. In fact, the relationship between Xi and Yi is described with

Yi | Xi ∼ Exponential(λXi).

where λ is an unknown parameter. We use the prior π(λ) ∝ 1/λ. You are given data
containing observations x1, . . . , xn of X1, . . . , Xn and y1, . . . , yn of Y1, . . . ,Yn. Example data
is given in Table 1 for n = 10.

x 2 2 1 3 4 3 2 1 2 4
y 2.21 6.26 0.72 0.33 0.31 11.33 0.05 10.14 1.50 1.43

Table 1: Data for question 2b.

(a) Describe a possible prior for the transition matrix P of the Markov chain X1, X2, . . . ,
which contains the information that we have Xi+1−Xi ≥ −1 for any i, i.e., in the chain
of x values, any jump downwards is with at most one step.

(b) Using the data in Table 1 and the prior you described in (a), compute the probability
distribution for the possible values of X11.

(c) What is the posterior for λ given data x1, . . . , xn and y1, . . . , yn? (Find a formula, do
not use the specific data of Table 1).
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Figure 2: The undirected weighted graph used in question 3.

1In the original exam, the indexation started at 0 instead of at 1. This has been changed to give a more coherent
notation.



3. (6 points) Consider the Metropolis Hastings algorithm applied to the state space with the
three elements {1, 2, 3}, with target distribution π(1) = 0.8, π(2) = 0.1, and π(3) = 0.1, and
proposal function given by the random walk on the undirected weighted graph shown in
Figure 2.

(a) Compute the terms of the transition matrix T for the Metropolis Hastings Markov
chain defined above.

(b) Is this Markov chain time reversible? Give an argument for your answer.

(c) Find a representation of the Metropolis Hastings Markov chain as a random walk on
a weighted undirected graph: Draw the graph and its weights.

4. (6 points) A continuous-time Markov chain has 4 possible states: We call them 1,2,3, and
4. From state 1, it moves to state 2 with rate 2. From state 2, it moves to state 1 with rate
2 and to state 3 with rate 1. When in state 3, it moves out of that state with rate 3, and into
each of the other states with equal probability. When in state 4, it moves to state 3 with
rate 1.

Below, numerical answers may, if you like, be expressed as an equation involving numeri-
cal vectors and numerical matrices: You do not need to include the final numerical answer
for such expressions.

(a) Draw a transition rate graph for the chain.

(b) Write down its generator matrix Q, and P̃, the transition matrix for the embedded
chain.

(c) Argue why the continuous-time Markov chain has a limiting distribution, and find
this limiting distribution.

(d) Assume the chain starts in state 2. Compute the expected time until the first time it
reaches either state 3 or state 4.

5. (6 points) A cog-wheel in a machine has n = 14 cogs (or "spikes") and turns forward one
cog at a time. The time it takes for it to move one cog forward is Exponentially distributed
with parameter λ = 0.3.

Below, you may give your answers as a numerical value, or R code for computing the
numerical answer, or, if you don’t remember the R syntax, as an equivalent mathematical
expression for computing the numerical answer.

(a) What is the probability that it does not move at all in the time interval [0, 2]?

(b) Given the information that at time 20 it has moved exactly a full turn, what is the
probability that it did not move at all in the time interval [0, 2]?

(c) What is the probability that the wheel has completed 3 full turns before the time
t = 100?



Appendix: Some probability distributions

The Beta distribution
If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =
(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)
Γ(α)Γ(β)Γ(n + α + β)

.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =
(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

xα1−1
1 xα2−1

2 · · · xαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).

The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.



The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | α, β) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β).

The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Negative Binomial distribution
A stochastic variable x taking on as possible values any nonnegative integer has a Negative
Binomial distribution if its probability mass function is given by

π(x | r, p) =
(
x + r − 1

x

)
· (1 − p)x pr =

Γ(x + r)
Γ(x + 1)Γ(r)

(1 − p)x pr

where r > 0 and p ∈ (0, 1) are parameters.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ). The Poisson distribution has expecta-
tion λ and variance λ.
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1. (a) We get, using the information in the appendix about the Geometric distribution,

µ = E [X] = E [Y − 1] = E [Y] − 1 =
1
p
− 1

and

σ2 = Var [X] = Var [Y − 1] = Var [Y] =
1 − p

p2 .

(b) The process is critical when 1/p − 1 = 1, i.e., when p = 1/2. When p > 1/2 the
process is sub-critical and when p < 1/2 it is supercritical. To compute in that last
case, we start with finding the probability generating function:

Gx(s) = E
[
sX

]
= E

[
sY−1

]
=

∞∑
y=1

p(1 − p)y−1sy−1

= p
∞∑

x=0

((1 − p)s)x

=
p

1 − (1 − p)s
.

Finding the smallest positive root of the equation GX(s) = s gives (using that the
equation must have s = 1 as a root):

p
1 − (1 − p)s

= s

p = s − s2(1 − p)
s2(1 − p) − s + p = 0

(s − 1)(s(1 − p) − p) = 0

so the smallest positive root is found setting s(1 − p) − p = 0. Summing up, we get
that the probability of extinction is 1 if p ≥ 1/2, and if p < 1/2 it is p/(1 − p).



(c) Using the law of total variance, writing X1, . . . , Xn for independent copies of X, and
doing computations stepwise, we get

Var [Z2] = Var [E [Z2 | Z1]] + E [Var [Z2 | Z1]]

= Var

E  n∑
i=1

Xi | Z1 = n

 + E

Var

 n∑
i=1

Xi | Z1 = n


= Var [n E [Xi] | Z1 = n] + E [n Var [Xi] | Z1 = n]
= Var [Z1 E [X]] + E [Z1 Var [X]]
= Var

[
Z1µ

]
+ E

[
Z1σ

2
]

= µ2 Var [Z1] + σ2 E [Z1]
= µ2 Var [X] + σ2 E [X]
= µ2σ2 + µσ2

= (µ + 1)µσ2

= (1/p − 1 + 1)(1/p − 1)
1 − p

p2

=
(1 − p)2

p4

2. (a) The lines P1, P2, P3, and P4 could be modelled with independent Dirichlet distribu-
tions as follows:

P1 ∼ Dirichlet(1, 1, 1, 1)
P2 ∼ Dirichlet(1, 1, 1, 1)
P3 ∼ Dirichlet(0, 1, 1, 1)
P4 ∼ Dirichlet(0, 0, 1, 1)

(other distribution parameters than the given ones could be used, except for the zero
values, which must be zero to encode the impossibility of certain jumps).

(b) There is only one recorded transition out of state 4, that is, a transition to state 3.
Thus, including the pseudo counts 0,0,1,1 from the prior, we get the posterior

P4 | data ∼ Dirichlet(0, 0, 2, 1).

As X11 | P4, X10 is Multinomial (in fact Binomial as it can have only two possible
values), we get, as in the course examples, the predictive distribution

Pr[X11 = 3 | data] =
2
3

Pr[X11 = 4 | data] =
1
3



(c) In the original exam, the indexation started at i = 0, while the illustration and data
table assumed a start at i = 1. The solution below assumes that the indexation starts
at i = 1; answering with formulas starting at i = 0 was of course also acceptable.
Note that factors in π(data | λ) that concern how Xi depends on Xi−1 do not contain λ,
and they can thus be dropped below.

π(λ | data) ∝λ π(data | λ)π(λ)

∝λ

n∏
i=1

Exponential(yi; λxi) ·
1
λ

∝λ
1
λ

n∏
i=1

λxi exp(−λxiyi)

∝λ
1
λ
λn exp

− n∑
i=1

λxiyi


∝λ λ

n−1 exp

−λ n∑
i=1

xiyi


∝λ Gamma

λ; n,
n∑

i=1

xiyi

 ,
so that the posterior distribution for λ must be Gamma

(
n,

∑n
i=1 xiyi

)
.

3. (a) Let us start for example with T12. To go to state 2 from state 1, the MH algorithm
needs to first propose state 2, and then accept this proposal. The probability of
proposing 2 is 1/2, by looking at the undirected weighted graph, while the accep-
tance probability, for any transition from i to j is

min
(
1,
π( j)
π(i)

)
as the proposals are symmetric. Thus we get

T12 =
1
2
·

0.1
0.8
=

1
16

We get the similar result

T13 =
1
2
·

0.1
0.8
=

1
16

and thus

T11 = 1 − T12 − T13 =
7
8



We then also get

T21 =
1
2
· 1 =

1
2

T23 =
1
2
· 1 =

1
2

T22 = 1 − T21 − T23 = 0

T31 =
1
2
· 1 =

1
2

T32 =
1
2
· 1 =

1
2

T33 = 1 − T31 − T32 = 0

so that in the end

T =


7
8

1
16

1
16

1
2 0 1

2
1
2

1
2 0

 .

(b) Any Markov chain produced by a Metropolis Hastings algorithm is time reversible.
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Figure 1: The answer to question 3c.



(c) As the stationary distribution is q = (0.8, 0.1, 0.1) we get

w12 = q1T12 = 0.8
1

16
=

1
20
= w21

w13 = q1T13 = 0.8
1

16
=

1
20
= w31

w23 = q2T23 = 0.1
1
2
=

1
20
= w32

w11 = q1T11 = 0.8
7
8
=

7
10

w22 = q2T22 = 0
w33 = w3T33 = 0

and the weighted undirected graph of Figure 1. Note that multiplying all weights
with the same constant, e.g., 20, gives a solution that works equally well.
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Figure 2: The answer to question 4a.

4. (a) See Figure 2.

(b) We get

Q =


−2 2 0 0
2 −3 1 0
1 1 −3 1
0 0 1 −1


and

P̃ =


0 1 0 0

2/3 0 1/3 0
1/3 1/3 0 1/3
0 0 1 0

 .



(c) The chain is irreducible as can be seen from the transition rate graph drawn in (a).
Thus it is ergodic, and has a unique limiting distribution which can be found as the
unique stationary distribution satisfying vQ = 0. To find this stationary distribution
we replace the first column of Q with 1’s to obtain Q′, and then solve the equation
vQ′ = (1, 0, 0, 0). In other words, we can compute

v =
[
1 0 0 0

] 
1 2 0 0
1 −3 1 0
1 1 −3 1
1 0 1 −1


−1

.

In fact, it is not too difficult to show that

v =
(

5
13
,

4
13
,

2
13
,

2
13

)
.

(d) We can make both states 3 and 4 into a single absorbing state (or we can notice that
state 4 is reachable from state 2 only via state 3, so we can ignore state 4 in this
question). From Q we get the fundamental matrix

F = −
[
−2 2
2 −3

]−1

.

The answer to the question is the sum of the second row of F, which can be computed
as

−
[
0 1

] [−2 2
2 −3

]−1 [
1
1

]
.

In fact, the answer becomes 2.

5. (a) The time before the first move is Exponentially distributed with parameter λ = 0.3.
The probabilty that such a variable is larger than 2 can be computed in R with

1- pexp(2, 0.3)

Mathematically, the cumulative distribution function is F(x) = 1 − exp(−λx), so we
may also compute the result as

exp(−2 · 0.3) = 0.548816.

(b) The 14 movements are each placed uniformly in the time interval [0,20]. The proba-
bility that there are no movements in the interval [0, 2] can then be computed as the
probability that all movements are in the interval [2, 20]:(

20 − 2
20

)14

= 0.2287679.



(c) The count of single-cog turns forward can be viewed as a Poisson process with param-
eter λ = 0.3. The arrival time for the n’th arrival is then distributed as Gamma(n, λ).
In other words, the probability that arrival number 3 · 14 = 42 occurs before time 100
can be computed with

pgamma(100, 14*3, 0.3)

in R. A mathematical expression for the same thing is∫ 100

0
Gamma(t, 42, 0.3) dt =

∫ 100

0

0.342

Γ(42)
t41 exp(−0.3t) dt.

The numerical answer is 0.02210704. Another way to compute this is with

1 - ppois(41, 300*0.3)

or the corresponding mathematical expression.


