
Petter Mostad
Applied Mathematics and Statistics
Chalmers and GU

MVE550 Stochastic Processes and Bayesian Inference

Re-exam August 21, 2023, 8:30 - 12:30
Examiner: Petter Mostad will be available by phone 031-772-3579

Allowed aids: Chalmers-approved calculator
Total number of points: 30. At least 12 points are needed to pass.

See appendix for some information about some probability distributions
All answers need to be explicitly computed or explicitly argued for.

1. (1 point) Define what it means for a stochastic process to have the Markov property: Define
it both in words, and in a formula for a process {Xt}t∈I where t indicates time.
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Figure 1: The transition graph for question 2.

2. (4 points)

(a) What are the conditions for a discrete-time discrete state space Markov chain to be
ergodic?

(b) Please describe (precisely) the most important limiting theorem that holds for such
ergodic Markov chains.

(c) Is the Markov chain with the transition graph in Figure 1 ergodic? Please explain.



(d) Let P be the transition matrix of the Markov chain of Figure 1. What1 is the value of

lim
n→∞

1
n

n−1∑
m=0

Pm
44

3. (8 points) A drop-in bike workshop has two employees, Hans and Otto. The time it takes
for Hans to fix a bike is 30 minutes on average, while Otto uses 1 hour on average. Cus-
tomers arrive independently of each other at a rate of 2 per hour. If neither Otto nor Hans
is working when a customer arrive, they flip a coin to decide who does the repair. If they
are both working, a new customer waits in line. If there are two persons waiting already,
new customers walk away. You may assume repair times are exponentially distributed.

(a) Modelling the workshop with a continuous-time Markov chain, draw a transition rate
diagram for the chain. Also, write down the generator matrix.

(b) What is the long-term proportion of time that Otto is working on fixing a bike? In-
stead of computing the result as a number, you may express the result as an equation
containing vectors and matrices of numbers.

(c) If they start working at 9 in the morning, what is the expected number of hours until
a customer walks away because there are already 2 persons waiting? Instead of com-
puting the result as a number, you may express the result as an equation containing
vectors and matrices of numbers.

(d) Is this a birth-and-death process? Please argue yes or no.

4. (5 points) Pedro makes independent observations of random variables X that are Gamma(α, β)
distributed, where α > 0 and β > 0 are two unknown parameters. He has observed
x1 = 2.4, x2 = 3.1, and x3 = 2.9. He would now like to make a probabilistic prediction for
x4, a fourth observation, using the information learned in the three first observations.

(a) What is the likelihood function for (α, β) given this data? Write down and simplify.

(b) Pedro first assumes an prior (misprint in original exam: "imprior") density

π(α, β) ∝
{

1/β if 4 ≤ α ≤ 7
0 otherwise

Write down a function proportional to the posterior density for (α, β).

(c) Describe one possible numerical computation with which Pedro can compute the
posterior probability that x4 > 3.

(d) Now, instead of the prior from (a), Pedro uses a prior where α = 5 is fixed, and
π(β) ∝ 1/β. Write down in an analytical form the posterior density for β in this case.

1Recall that Pm
44 should be interpreted as (Pm)44.



5. (5 points) Let X be a random variable with the non-negative integers as state space.

(a) Define the probability generating function GX(s).

(b) Compute G′X(1) and G′′X(X) in terms of properties of X.

(c) State and prove a way to express Var [X] in terms of G′X(1) and G′′X(1).

6. (3 points) Assume {Bt}t≥0 is Brownian motion and that k > 1 is an integer. Compute the
distribution of

B1 + B2 + · · · + Bk.

7. (4 points) Assume given a generator matrix Q for a continuous-time Markov chain. Poisson
subordination means that one introduces a matrix R = 1

λ
Q + I for some λ.

(a) What is the condition on λ for R to become a stochastic matrix? Prove your answer.

(b) Show how the exponential matrix etQ can be expressed as an infinite sum expressed
in matrix powers Rk.

(c) Explain how your formula from (b) can be used to make numerical approximate
computations for etQ.



Appendix: Some probability distributions

The Beta distribution
If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =
(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)
Γ(α)Γ(β)Γ(n + α + β)

.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =
(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

pα1−1
1 pα2−1

2 · · · pαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).

The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.



The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β).

The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Negative Binomial distribution
A stochastic variable x taking on as possible values any nonnegative integer has a Negative
Binomial distribution if its probability mass function is given by

π(x | r, p) =
(
x + r − 1

x

)
· (1 − p)x pr =

Γ(x + r)
Γ(x + 1)Γ(r)

(1 − p)x pr

where r > 0 and p ∈ (0, 1) are parameters.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ). The Poisson distribution has expecta-
tion λ and variance λ.
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1. In words: The distribution of the process in the future is independent of its past given its
value in the present. In a formula: For all r ∈ I,

Pr[Xs, s > r | Xt, t ≤ r] = Pr[Xs, s > r | Xr].

2. (a) A discrete-time discrete state space Markov chain is ergodic if it is irreducible, posi-
tive recurrent, and aperiodic.

(b) For such chains the "Fundamental Limit Theorem" holds, stating that there exists a
unique positive stationary distribution with is also the limiting distribution for the
chain.

(c) No, it is not ergodic. In fact it is periodic with period 2, as the chain will always jump
between even and odd states.

(d) Even if the chain is not ergodic, it is finite and irreducible, and then the theorem for
such chains states that there is a unique positive stationary distribution for the chain
whose j’th term is

lim
n→∞

1
n

n−1∑
m=0

Pm
i j

for any i. Thus the value we want is the 4’th term of the unique stationary distribution
for the chain. Looking at Figure 1 of the questions document, we see that the chain is
symmetric in the four states, so (1

4 ,
1
4 ,

1
4 ,

1
4 ) must be a stationary distribution, and thus

the unique stationary distribution. Thus the answer is 1
4 .

3. (a) Naming the 6 necessary states and listing the states in the following order

• I: Both persons are idle.
• H: Hans works while Otto is idle.
• O: Otto works while Hans is idle.
• B0W: Both work, zero persons waiting.
• B1W: Both work, one person waiting.
• B2W: Both work, two persons waiting.
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Figure 1: The transition rate graph for question 3.

we get the diagram of Figure 1 and the generator matrix

Q =



−2 1 1 0 0 0
2 −4 0 2 0 0
1 0 −3 2 0 0
0 1 2 −5 2 0
0 0 0 3 −5 2
0 0 0 0 3 −3


.

(b) This is an irreducible chain, so it has a limiting distribution v which can be found by
solving the equation vQ = 0 for a vector of positive values summing to 1. We can
find this vector by solving

v



−2 1 1 0 0 1
2 −4 0 2 0 1
1 0 −3 2 0 1
0 1 2 −5 2 1
0 0 0 3 −5 1
0 0 0 0 3 1


=

[
0 0 0 0 0 1

]
.

Otto works when the chain is in state O, B0W, B1W, or B2W. This means that the pro-
portion of time Otto works can be computed as the sum of the four last components



of v. In other words, the proportion can be computed as

[
0 0 0 0 0 1

]


−2 1 1 0 0 1
2 −4 0 2 0 1
1 0 −3 2 0 1
0 1 2 −5 2 1
0 0 0 3 −5 1
0 0 0 0 3 1



−1 

0
0
1
1
1
1


.

(c) We can solve this by imagining that there is a seventh state B3W which is absorbing.
The generator matrix would then become

Q =



−2 1 1 0 0 0 0
2 −4 0 2 0 0 0
1 0 −3 2 0 0 0
0 1 2 −5 2 0 0
0 0 0 3 −5 2 0
0 0 0 0 3 −5 2
0 0 0 0 0 0 0


and we get the corresponding fundamental matrix

F = −



−2 1 1 0 0 0
2 −4 0 2 0 0
1 0 −3 2 0 0
0 1 2 −5 2 0
0 0 0 3 −5 2
0 0 0 0 3 −5



−1

.

Finally, the expected number of hours until absorbtion when the chain starts in state
I can now be computed as the sum of the first row of F:

−
[
1 0 0 0 0 0

]


−2 1 1 0 0 0
2 −4 0 2 0 0
1 0 −3 2 0 0
0 1 2 −5 2 0
0 0 0 3 −5 2
0 0 0 0 3 −5



−1 

1
1
1
1
1
1


.

(d) This is NOT a birth-and-death process. The transition graph of a birth-and-death
process is linear, while the transition graph of this process is not.



4. (a) The likelihood function becomes

π(x1, x2, x3 | α, β) =
3∏

i=1

Gamma(xi;α, β)

=

3∏
i=1

βα

Γ(α)
xα−1

i exp(−βxi)

=
β3α

Γ(α)3 (x1x2x3)α−1 exp(−β(x1 + x2 + x3))

=
β3α

Γ(α)3 25.576α−1 exp(−8.4β)

(b) The posterior can be computed, up to proportionality, as the product

π(α, β | x1, x2, x3) ∝ π(x1, x2, x3 | α, β)π(α, β)

∝
β3α−1

Γ(α)3 25.576α−1 exp(−8.4β)

whenever 4 ≤ α ≤ 7, and zero otherwise.

(c) We can use numerical integration or discretization. More specifically, we can write

π(x4 > 3 | x1, x2, x3) =
∫ ∞

β=0

∫ 7

α=4
π(x4 > 3 | α, β)π(α, β | x1, x2, x3) dα dβ

=

∫ ∞
β=0

∫ 7

α=4
π(x4 > 3 | α, β)π(x1, x2, x3 | α, β)π(α, β) dα dβ∫ ∞
β=0

∫ 7

α=4
π(x1, x2, x3 | α, β)π(α, β) dα dβ

These integrals can be computed plugging in the expression from (b) and noting that
π(x4 > 3 | α, β) is simply the value of the cumulative Gamma distribution, which may
be computed in R with the function pgamma.

(d) Substituting α = 5 into the expression for the posterior found in (b) we get

π(β | x1, x2, x3) ∝
β3·5−1

Γ(5)3 25.5765−1 exp(−8.4β)

∝ β15−1 exp(−8.4β)

∝
158.4

Γ(8.4)
β15−1 exp(−8.4β)

= Gamma(β; 15, 8.4).

As the posterior is proportional to the Gamma density above, it must be equal to the
Gamma density above.

5. (a) GX(s) = E
[
sX

]
.



(b) We may compute

G′X(s) =
d
ds

E
[
sX

]
=

d
ds

∞∑
k=0

sk Pr[X = k]

=

∞∑
k=0

d
ds

sk Pr[X = k]

=

∞∑
k=0

ksk−1 Pr[X = k]

= E
[
XsX−1

]
so G′X(1) = E

[
X1X−1

]
= E [X]. We also have

G′′X(s) =
d
ds

∞∑
k=0

ksk−1 Pr[X = k]

=

∞∑
k=0

d
ds

ksk−1 Pr[X = k]

=

∞∑
k=0

k(k − 1)sk−2 Pr[X = k]

= E
[
X(X − 1)sX−2

]
so G′′X(1) = E

[
X(X − 1)1X−2

]
= E [X(X − 1)] = E

[
X2

]
− E [X].

(c) We may now write

Var [X] = E
[
X2

]
− E [X]2

= E
[
X2

]
− E [X] + E [X] − E [X]2

= G′′X(1) +G′X(1) −G′X(1)2.

6. Building on the examples from the course we can fairly easily show that

B1 + · · · + Bk = kB1 + (k − 1)(B2 − B1) + (k − 2)(B3 − B2) + · · · + Bk − Bk−1.

As the variables Bi − Bi−1 are all independent and Normal(0, 1) distributed, we get that the
sum above also has a Normal distribution. Its expectation is

E [B1 + · · · + Bk] = E [B1] + · · · + E [Bk] = 0



while the variance becomes

Var [B1 + · · · + Bk] = Var [kB1 + (k − 1)(B2 − B1) + (k − 2)(B3 − B2) + · · · + Bk − Bk−1]
= k2 Var [B1] + (k − 1)2 Var [B2 − B1] + (k − 2)2 Var [B3 − B2] + · · · + 1
= k2 + (k − 1)2 + · · · + 1

In other words
B1 + · · · + Bk ∼ Normal(0, 1 + · · · + k2)

or, if you like,

B1 + · · · + Bk ∼ Normal
(
0,

k(k + 1)(2k + 1)
6

)
.

7. (a) If 1 is the vector consisting of 1’s, we get that R1 = 1
λ
Q1 + I1 = 0 + 1, so all rows of

R sum to 1. In addition, we need all elements of R to be non-negative. The elements
of Q are non-negative except for the diagonal, which means that the off-diagonal
elements of 1

λ
Q+ I are non-negative. The i’th diagonal element is −qi/λ+1, where qi

is the i’th diagonal element of Q. Setting −qi/λ + 1 ≥ 0 yields λ ≥ qi for all i which
is the requirement we need.

(b) As Q = λ(R − I) and as the diagonal matrix e−tλI commutes with any other matrix,
we get

etQ = e−tλI+tλR = e−tλIetλR = e−tλetλR.

Using the definition of the exponential matrix, we further get

e−tλetλR = e−tλ
∞∑

k=0

(tλR)k

k!
= e−tλ

∞∑
k=0

(tλ)k

k!
Rk.

(c) Instead of summing to infinity in the matrix sum above, we can sum some finite N
number of terms. This will usually give a better approximation to the limit than using
the same number of terms in the definition

etQ =

∞∑
k=0

tk

k!
Qk.



Appendix: Some probability distributions

The Beta distribution
If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =
(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)
Γ(α)Γ(β)Γ(n + α + β)

.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =
(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

pα1−1
1 pα2−1

2 · · · pαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).

The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.



The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β).

The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Negative Binomial distribution
A stochastic variable x taking on as possible values any nonnegative integer has a Negative
Binomial distribution if its probability mass function is given by

π(x | r, p) =
(
x + r − 1

x

)
· (1 − p)x pr =

Γ(x + r)
Γ(x + 1)Γ(r)

(1 − p)x pr

where r > 0 and p ∈ (0, 1) are parameters.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ). The Poisson distribution has expecta-
tion λ and variance λ.


