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See appendix for some information about some probability distributions

1. (6 points) Ari would like to learn about and document the probability p that a randomly
chosen car going through his street exceeds the speed limit by more than 10 km/h. From
his window, he can clock the cars in such a way that he can detect this, and every morn-
ing he counts cars until and including the first one speeding. He assumes his count X is
Geometrically distributed.

(a) If he observes the counts 9, 5, 7, 14, what is the likelihood function for p given this
data?

(b) What kind of assumption does he need to make about p to do a Bayesian analysis?
Make a reasonable assumption.

(c) Write down an expression, using mathematics or R code, that computes the probabil-
ity that p < 0.05 given the observations Ari has made.

(d) Let Y be the predicted count for tomorrow, using the information from the data
observed so far in the prediction. Write down a mathematical expression equal to
Pr(Y = 10).

2. (4 points) Consider a Branching process with offspring distribution X, where

Pr(X = k) =
{
αk(1 − α2) for k even

0 for k odd

for some parameter α with 0 < α < 1.

(a) Find and simplify the probability generating function for X.

(b) Compute the probability that the branching process goes extinct as a function of α,
or show how to compute it.

3. (3 points) Assume a model has been established where observations y1, . . . , yn, yn+1 are
independent given some underlying parameter θ, with given likelihood function f :

π(yi | θ) = f (yi; θ).



Assume also given a prior density function g for θ:

π(θ) = g(θ).

(a) Outline the steps in an MCMC algorithm that obtains a sample θ1, θ2, . . . , θN from a
Markov chain whose limiting distribution is the posterior π(θ | y1, . . . , yn).

(b) Assume a sequence θ1, . . . , θN like above has been produced. How can one use this
sequence to obtain an approximate sample from the distribution of yn+1 conditional
on y1, . . . , yn?

4. (8 points) Elisabeth is studying a system which can have 5 different states: A, B, C, D, and
E. She assumes they change according to a continuous-time Markov model. The expected
holding times for states A, B, C, D, E are 1/3, 1, 1/5, 1/6, and 1/2 years, respectively.

When leaving a state, the probabilities for going to other states are specified as

• From state A one always goes to state B.

• From state B one goes to state A, C, or D with probabilities 1/4, 1/2, 1/4, respectively.

• From state C one always goes to state B.

• From state D one goes to state B or E with equal probability.

• From state E one goes to state C or D with equal probability.

Your answers to the questions below (except (b)) should be expressions consisting of ma-
trices and vectors of numbers, and may contain operations such as addition, subtraction,
multiplcation, and inversion. You do not need to evaluate the expressions.

(a) Write down the generator matrix Q. (List states in the order A,B,C,D,E).

(b) Is the Markov chain time reversible? Prove or disprove.

(c) What is the long term probability that the system is in state A?

(d) If the system starts in state B, what is the expected time until it enters state C?

(e) If the system starts in state A, what is the number of steps until it enters state C?

5. (5 points) After a shop opens, customers enter it according to a Poisson process Nt with
rate λ per minute. Independently of each other, customers spend Z minutes in the shop,
where Z is uniformly distributed on the interval [0, 10]. Let Xt be the number of customers
in the shop at time t.

(a) Is Xt a Markov process? Prove or argue yes or no.

(b) For a time t ≤ 10, select uniformly at random a customer among those that entered
the shop before time t. Compute the probability that the customer is still in the shop
at time t.



(c) At a time t ≥ 10, select uniformly at random a customer among those that entered the
shop during the last 10 minutes. Compute the probability that the customer is still in
the shop at time t.

(d) Compute the expected number of customers E [Xt] at time t. You may separate into
the cases t < 10 and t ≥ 10.

6. (4 points)

(a) Write down the definition of geometric Brownian motion.

(b) If Gt denotes geometric Brownian motion, compute its expectation E(Gt).



Appendix: Some probability distributions

The Beta distribution
If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =
(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)
Γ(α)Γ(β)Γ(n + α + β)

.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =
(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

pα1−1
1 pα2−1

2 · · · pαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).

The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.



The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β).

The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Negative Binomial distribution
A stochastic variable x taking on as possible values any nonnegative integer has a Negative
Binomial distribution if its probability mass function is given by

π(x | r, p) =
(
x + r − 1

x

)
· (1 − p)x pr =

Γ(x + r)
Γ(x + 1)Γ(r)

(1 − p)x pr

where r > 0 and p ∈ (0, 1) are parameters.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ). The Poisson distribution has expecta-
tion λ and variance λ.
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1. (a) The likelihood function becomes

π(data | p) = p(1 − p)9−1 p(1 − p)4−1 p(1 − p)7−1 p(1 − p)14−1 = p4(1 − p)31.

(b) He would need to choose a prior density π(p) for p. A possibility would be to set
p ∼ Uniform(0, 1), but there are other possibilities, such as setting π(p) ∝p

1
p(1−p) .

(c) Using the uniform prior, we get the posterior

π(p | data) ∝p π(data | p)π(p) = p4(1 − p)31 ∝p Beta(p; 5, 32).

Thus

Pr(p < 0.05 | data) =
∫ 0.05

0
Beta(p; 5, 32) dp =

Γ(5 + 32)
Γ(5)Γ(32)

∫ 0.05

0
p4(1 − p)31 dp.

In R this can be computed with

pbeta(0.05, 5, 32)

which gives 0.03236271.

(d) Writing π(p) for the posterior density Beta(5, 32) found above, the posterior predic-
tive mass function in this case can be computed as

π(y) =
π(y | p)π(p)
π(p | y)

=
p(1 − p)y Beta(p; 5, 32)
Beta(p; 5 + 1, 32 + y)

=
p(1 − p)y Γ(5+32)

Γ(5)Γ(32) p4(1 − p)31

Γ(6+32+y)
Γ(6)Γ(32+y) p5(1 − p)31+y

=
Γ(5 + 32)Γ(6)Γ(32 + y)
Γ(5)Γ(32)Γ(32 + 6 + y)

.

Thus

Pr(Y = 10) =
Γ(37)Γ(6)Γ(42)
Γ(5)Γ(32)Γ(48)

.

2. (a)

GX(s) = E
[
sX

]
=

∞∑
k=0

s2kα2k(1 − α2) = (1 − α2)
∞∑

k=0

(α2s2)k =
1 − α2

1 − α2s2 .



(b) The probability of extinction is the smallest positive root of the equation

1 − α2

1 − α2s2 = s

i.e., of
α2s3 − s + 1 − α2 = 0.

Using that s = 1 is a root we can factor this as

(s − 1)(α2s2 + α2s + α2 − 1) = 0.

Solving s2 + s + 1 − 1/α2 = 0 by completing the square gives the smallest positive
root as

s = −
1
2
+

√
1
α2 −

3
4
.

Alternatively, one might explain how to compute this result numerically.

3. (a) To define an MCMC chain, one first has to select a proposal distribution g(θ∗ | θ)
from which one can readily simulate, and an initial distribution for θ. The algorithm
then goes as follows:

• Simulate θ1 from the initial distribution.
• For i = 1, . . . ,N − 1:

– Simulate θ∗ using g(θ∗ | θi).
– Compute

ρ = min
(
1,

g(θ∗)
∏

i=1 f (yi; θ∗)q(θ | θ∗)
g(θi)

∏
i=1 f (yi; θi)q(θ∗ | θ)

)
– Set θi+1 = θ

∗ with probability ρ; otherwise set θi+1 = θi.

(b) For example, one can for i = 1, . . . ,N simulate zi from the distribution with likelihood
π(zi | θi) = f (zi; θi). As θ1, . . . , θN is an approximate sample from the posterior,
(z1, θ1), . . . , (zN , θN) will be an approximate sample from π(yn+1, θ | y1, . . . , yn), so
z1, . . . , zN will be an approximate sample from π(yn+1 | y1, . . . , yn).

4. (a) We get

Q =


−3 3 0 0 0

1
4 −1 1

2
1
4 0

0 5 −5 0 0
0 3 0 −6 3
0 0 1 1 −2

 .
(b) The rate of going from E to C is 1, while the rate of going the other way is zero. A

stationary distribution will have positive probabilities for all states, and so it cannot
possibly fulfil the detailed balance condition between C and E. so the chain is NOT
time reversible.



(c) The chain is ergodic, and its unique stationary distribution is given by the probability
vector v satisfying vQ = 0. We can find v by replacing the first column of Q by 1s to
obtain Q′, solving the matrix equation vQ′ = [1, 0, 0, 0, 0], and finding the value v1.
In other words, one may compute

[
1 0 0 0 0

]

1 3 0 0 0
1 −1 1

2
1
4 0

1 5 −5 0 0
1 3 0 −6 3
1 0 1 1 −2



−1 
1
0
0
0
0

 .
(d) We make state C into an absorbing state. Thus we take out from Q the row and

column corresponding to C, and then take the negative of the inverse to get the fun-
damental matrix. Then we take the sum of the second row to get the answer to the
question. We get that we should compute

−
[
0 1 0 0

] 
−3 3 0 0

1
4 −1 1

4 0
0 3 −6 3
0 0 1 −2


−1 

1
1
1
1

 .
(e) The transition matrix of the embedded chain is:

P̃ =


0 1 0 0 0
1
4 0 1

2
1
4 0

0 1 0 0 0
0 1

2 0 0 1
2

0 0 1
2

1
2 0

 .
Making C into an absorbing state, we obtain the matrix V by removing the row and
column corresponding to C. The fundamental matrix in the case of a discrete-time
Markov chain is then F = (I − V)−1, and we get that we should now compute

[
1 0 0 0

] 
1 −1 0 0
−1

4 1 −1
4 0

0 −1
2 1 −1

2
0 0 −1

2 1


−1 

1
1
1
1

 .
5. (a) Xt is not a Markov process, as the future number of customers in the shop will be

influenced not only by the current number of customers there, but also by how long
these customers have stayed, i.e., the values of Xs for s < t. For example, if we can
see from the values of Xs for s < t that the current customers have all been there more
than 9 minutes, the number of customers at t + 1 will be simply those who arrived
between t and t + 1, whereas if they had been there less than 1 minute, most will by
a high probability still be there at t + 1.



(b) Let Y be the arrival time of the customer. Then the density π(y) for Y is uniform on
the interval [0, t]. If we condition on Y , we get

Pr(still in shop) =
∫ t

0
Pr(still in shop | y)π(y) dy

=

∫ t

0

(
1 −

t − y
10

)
·

1
t

dy

=
1
t

[
y −

t
10

y +
y2

20

]t

0

= 1 −
t

10
+

t
20

= 1 −
t

20
.

(c) This situation is exactly the same as the situation when t = 10, as the Poisson process
of arriving customers is stationary. Thus the probability becomes 1 − 10

20 =
1
2 .

(d) If t < 10,

E [Xt] = E [E [Xt | Nt]] = E
[
Nt

(
1 −

t
20

)]
=

(
1 −

t
20

)
E [Nt] =

(
1 −

t
20

)
λt.

If t ≥ 10, as all customers who entered more than 10 minutes ago have left, we get

E [Xt] = E [E [Xt | Nt − Nt−10]] = E
[
(Nt − Nt−10)

1
2

]
=

1
2

E [N10] =
10λ

2
= 5λ.

6. (a) A process Gt is geometric Brownian motion if there are parameters G0, µ, and σ so
that

Gt = G0etµ+σBt

where Bt is Brownian motion.

(b) We get

E(Gt) = E(G0etµ+σBt)
= G0etµE(eσBt)

= G0etµ
∫ ∞

−∞

eσs 1
√

2πt
exp

(
−

1
2t

s2
)

ds

= G0etµ 1
√

2πt

∫ ∞

−∞

exp
(
−

1
2t

(s2 − 2σts)
)

ds

= G0etµ 1
√

2πt

∫ ∞

−∞

exp
(
−

1
2t

(s − σt)2 + t
σ2

2

)
ds

= G0etµetσ2/2
∫ ∞

−∞

1
√

2πt
exp

(
−

1
2t

(s − σt)2
)

ds

= G0et(µ+σ2/2)


