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MVE550 Stochastic Processes and Bayesian Inference

Exam January 11, 2023, 8:30 - 12:30
Examiner: Petter Mostad, phone 031-772-3579, visits exam at 9:30 and 11:30

Allowed aids: Chalmers-approved calculator
Total number of points: 30. At least 12 points are needed to pass.

See appendix for some information about some probability distributions
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Figure 1: The weighted graph for question 1.

1. (8 points) Consider the weighted undirected graph of Figure 1. The weight x is a real-
valued parameter that may be zero or positive. Define a Markov chain as a random walk
on this weighted graph.

(a) List the recurrent states and the transient states of the chain. Argue why the states are
recurrent or transient.

(b) For all possible fixed values of x, present, if possible, a stationary distribution.

(c) For all possible fixed values of x, present, if possible, a limiting distribution.

(d) Assume x = 3.7. Is the Markov chain time reversible? Argue for your answer.

(e) For the Markov chain that starts in A, write an expression that computes the expected
number of steps before it hits either G or H. Your expression should be written in
terms of matrices and vectors of numbers and x, and operations on these such as
multiplication, subtraction, addition, and inversion.



2. (6 points) Consider a branching process where the offspring distribution X has the proba-
bility generating function

GX(s) =
2
3
+

1
3

s2 1 − k
1 − sk

where k is some real-valued parameter satisfying 0 < k < 1.

(a) Compute which values of k that make the process subcritical, critical, or supercritical.

(b) What is the probability that there is exactly one offspring, i.e., what is P[X = 1]?

(c) Compute the probability of extinction as a function of k.

3. (4 points)

(a) Describe the Metropolis Hastings algorithm in your own words: What is its purpose?
What do you need to choose when using it? What are the steps in the algorithm?

(b) What are the main ideas in perfect sampling?

4. (8 points) A continuous-time Markov chain has two possible states, A and B, and generator
matrix

Q =
[
−λ1 λ1

λ2 −λ2

]
for positive λ1 and λ2. It starts in state A.

(a) Let T be the time at which the the Markov chain returns to A the first time. Compute
the expectation and variance of T .

(b) For t ≥ 0 define Mt as the number of times the chain has returned to A before time t.
Prove or disprove that this is a Poisson process. Is it a counting process?

(c) A realization of the process has been observed for a short while, as it jumps between
A and B. The times spent in each state have been recorded as

A B A B A B A B A B
0.2 4.0 0.1 3.5 0.3 2.0 0.2 2.5 0.3 3.0

Assume we use the following prior density on Q:

π(Q) = Gamma(λ1; 4, 1) · Gamma(λ2; 1, 3).

Compute the posterior density for Q given the data above.

5. (4 points) Let {Bt}t≥0 denote Brownian motion.

(a) Compute the expectation and variance of B1 + 2B4 + 3B7.

(b) For each of the processes below, make an argument about whether or not {Mt}t≥0 is
Brownian motion:



i. Mt = B2.3+t − B2.3

ii. Mt = BT+t − BT where T is the last time smaller than time 2.3 that the process is
equal to zero.

iii. Mt = BT+t − BT where T is the first time the process reaches the value 2.3.



Appendix: Some probability distributions

The Beta distribution
If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =
(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)
Γ(α)Γ(β)Γ(n + α + β)

.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =
(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

pα1−1
1 pα2−1

2 · · · pαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).

The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.



The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β).

The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Negative Binomial distribution
A stochastic variable x taking on as possible values any nonnegative integer has a Negative
Binomial distribution if its probability mass function is given by

π(x | r, p) =
(
x + r − 1

x

)
· (1 − p)x pr =

Γ(x + r)
Γ(x + 1)Γ(r)

(1 − p)x pr

where r > 0 and p ∈ (0, 1) are parameters.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ). The Poisson distribution has expecta-
tion λ and variance λ.
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1. (a) All states are recurrent. A possible way to argue: If x = 0 there are two closed
communication classes. If x > 0 there is one closed communication class. All states
in finite closed communication classes are recurrent. (Note that the definition of
recurrence is about returning to a state, not about reaching it.)

(b) For any Markov chain defined as a random walk on a weighted graph, we get a
stationary distribution by, for each node, computing the sum of the weights on the
edges connected to it, and then normalizing so that the probabilities sum to 1. For the
nodes A, . . . ,H we get the sums

4, 4, 3 + x, 3, 2 + x, 3, 3, 4

respectively, with the total sum 26+2x. Thus a stationary distribution is

1
26 + 2x

(4, 4, 3 + x, 3, 2 + x, 3, 3, 4).

Note that, for x = 0, there are also other stationary distributions.

(c) For any x, the Markov chain is periodic with period 2. Thus it cannot have a limiting
distribution, as the probabilities for what the current state is will always depend on
the starting state.

(d) Yes, the chain is time reversible, as all Markov chains defined as random walks on
weighted graphs are time reversible.

(e) When x = 0 the chain is reducible and the expected number of steps is infinite. For
x > 0, let us first write down the transition matrix for the Markov chain without any
absorbing states:

P =



0 3/4 1/4 0 0 0 0 0
3/4 0 0 1/4 0 0 0 0

1
3+x 0 0 2

3+x
x

3+x 0 0 0
0 1/3 2/3 0 0 0 0 0
0 0 x

x+2 0 0 1
x+2

1
x+2 0

0 0 0 0 1/3 0 0 2/3
0 0 0 0 1/3 0 0 2/3
0 0 0 0 0 1/2 1/2 0


.



To answer the question, we set the two last states (G and H) as absorbing, and take
the inverse of the identity minus the submatrix of P where the rows and columns
corresponding to states G and H are removed. Then we take the sum of the first row
of this matrix, as we start in state A. Thus the answer becomes

[
1 0 0 0 0 0

]


1 −3/4 −1/4 0 0 0
−3/4 1 0 −1/4 0 0
− 1

3+x 0 1 − 2
3+x − x

3+x 0
0 −1/3 −2/3 1 0 0
0 0 − x

x+2 0 1 − 1
x+2

0 0 0 0 −1/3 1



−1 

1
1
1
1
1
1


.

2. (a) As we know that E [X] = G′X(1), we first compute the derivative of GX:

G′X(s) =
1
3

[
2s

1 − k
1 − sk

+ s2 k(1 − k)
(1 − sk)2

]
.

From this we get

E [X] = G′X(1) =
1
3

[
2 +

k
1 − k

]
.

Solving G′X(1) = 1 yields k = 1
2 . From this we get that if 0 < k < 1

2 then the process
is subcritical. If k = 1

2 the process is critical. And if k > 1
2 the process is supercritical.

(b) We get that
P[X = 1] = G′X(0) = 0

Thus the probability is zero. One can also derive this result by expanding the factor
1−k
1−sk as a power series; we see then that GX(s) is expressed as a power series where
the first-degree term (containing s1) is zero.

(c) We solve for s the equation
GX(s) = s,

i.e.,
2
3
+

1
3

s2 1 − k
1 − sk

= s

which may be transformed to

s2(2k + 1) − s(2k + 3) + 2 = 0.

As we know that, as always, s = 1 is a root, we may factor this as

(s − 1)(s(2k + 1) − 2) = 0

and we see that the other root is given by

s(2k + 1) − 2 = 0

i.e., s = 2
2k+1 . So when k ≤ 1

2 the extinction probability is 1, while when k > 1
2 the

extinction probability is 2
2k+1 .



3. (a) Given a function f (x) proportional to a density, the purpose of the Metropolis Hast-
ings algorithm is to generate an approximate sample from this density. More pre-
cisely, one constructs a Markov chain which has the density as its limiting distri-
bution, and generates a realization from this chain. To do so, one needs to select
a starting value (or distribution) for the Markov chain, and a proposal distribution
q(x∗ | x), a density for all x from which one knows how to generate a sample.
An outline of the steps in the algorithm is:

• Set x0 to the starting state of the Markov chain, or simulate it from the starting
distribution.
• For i = 1, . . . ,N:

– Simulate x∗ using the density q(x∗ | xi−1).
– Compute the acceptance probability

ρ = min
(
1,

f (x∗)q(x | x∗)
f (x)q(x∗ | x)

)
– Set xi = x∗ with probability ρ, otherwise set xi = xi−1.

• Now xN is an approximate sample from the density proportional to f (x).

(b) The purpose of perfect sampling is to find an algorithm so that the simulated value xN

is exactly from the target distribution, without involving an approximation or limiting
process. One achieves that by generating xN in such a way that it is independent of
the starting value x0 of the chain. In principle, one can obtain such an independence
by considering S coupled chains, where S is the size of the sample space, and where
each chain starts at a different state. An important idea is then to couple these chains
so that if two chains are at equal states in one time step, they will be equal at the
next time step too. Finally, in order to avoid keeping track of S chains, one can, if
possible, use a partial ordering so that only a maximal and a minimal chain needs to
be produced: If they have converged to the same state at some predefined time step,
one knows the value at this time step is a sample from the target distribution. (Note
that a shorter answer than this can give full points).

4. (a) Let X be a holding time when the process is in state A and Y a holding time when the
process is in state B. Then

X ∼ Exponential(λ1)
Y ∼ Exponential(λ2).

Thus we get

E [T ] = E [X] + E [Y] =
1
λ1
+

1
λ2

and
Var [T ] = Var [X] + Var [Y] =

1
λ2

1

+
1
λ2

2

.



(b) Mt is NOT a Poisson process. If it were a Poisson process with parameter λ, we know
that the time T between events would be exponentially distributed with parameter λ.
Thus we would get

E [T ] =
1
λ

and
Var [T ] =

1
λ2 .

This would mean that

1/λ = 1/λ1 + 1/λ2

1/λ2 = 1/λ2
1 + 1/λ2

2.

These two together would yield(
1
λ1
+

1
λ2

)2

=
1
λ2

1

+
1
λ2

2

which is impossible as 2
λ1λ2
> 0.

However, Mt is clearly a counting process.

(c) Let us write a1, . . . , a5 and b1, . . . , b5 for the observed holding times for state A and
state B, respectively, and note that a1 + · · ·+ a5 = 1.1 and b1 + · · ·+ b5 = 15. We then
get for the posterior

π(Q | data) ∝Q π(data | Q)π(Q)

∝Q

 5∏
i=1

Exponential(ai; λ1) · Exponential(bi; λ2)

 π(Q)

∝Q

 5∏
i=1

λ1 exp(−λ1ai)λ2 exp(−λ2bi)

 λ4−1
1 exp(−λ1)λ1−1

2 exp(−3λ2)

= λ8
1 exp−2.1λ1λ

5
2 exp(−18λ2)

= Gamma(λ1; 9, 2.1) · Gamma(λ2; 6, 18)

As the last function integrates to 1, it is the actual density for Q.

5. (a) We get
E [B1 + 2B4 + 3B7] = E [B1] + 2 E [B4] + e E [B7] = 0

and

Var [B1 + 2B4 + 3B7] = Var [B1 + 2B4 + 3(B7 − B4) + 3B4]
= Var [B1 + 5(B4 − B1) + 5B1 + 3(B7 − B4)]
= Var [6B1 + 5(B4 − B1) + 3(B7 − B4)]
= 36 Var [B1] + 25 Var [B4 − B1] + 9 Var [B7 − B4]
= 36 · 1 + 25 · 3 + 9 · 3 = 138.



(b) We have proven in the course that BT+t − BT is Brownian motion if T is a stopping
time. The random variable T is a stopping time if the value of T can be determined
by knowing the Brownian motion on the interval [0,T ]. This means that

i. This is Brownian motion, as 2.3 trivially is a stopping time.
ii. This is NOT Brownian motion, as the value of T here cannot be determined by

looking at the Brownian motion in the interval [0,T ].
iii. This is Brownian motion, as the value of T can be determined by looking at the

Brownian motion in the interval [0,T ].


