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See appendix for some information about some probability distributions

1. (6 points) Assume you have observed the values x1 = 2.3, x2 = 5.1, x3 = 7.9 and you
believe they are sampled from a Normal(µ, 1/τ) distribution. You have some information
about the parameters µ and τ; assume first that you know that µ = 4 but are uncertain about
τ.

(a) Write down the likelihood function for τ. Find a probability density function of τ that
is proportional to the likelihood.

(b) You would like to compute the probability that your next observed value will be
larger than 8. Describe in detail the steps in the Bayesian way of making such a
computation. Describe and make the assumptions you need to make. You do not need
to compute the actual probability, just describe how to compute it in mathematical
detail and/or with R code.

(c) Now assume that instead of knowing that µ = 4, your prior information is a uniform
distribution on the interval [2, 6] for µ, and a uniform distribution on the interval
[0.1, 10] for τ. There are now several ways of (approximately) computing the poste-
rior probability that µ > 4; describe one of them.

2. (6 points)

(a) Let Z0,Z1,Z2, . . . be a branching process, so that Zn =
∑Zn−1

i=1 Xi, where the Xi are
independent copies of a random variable X. If

Pr[X = 0] = 0.1
Pr[X = 1] = 0.5
Pr[X = 3] = 0.4

find the probability of extinction.

(b) Assume instead that the offspring processes are different in even and odd generations,



so that

Zn =

Zn−1∑
i=1

Xi n even

Zn =

Zn−1∑
i=1

Yi n odd

where the Yi are independent copies of a random variable Y . Define

W =
Y∑

i=1

Xi.

Find and prove a relationship between the probability generating functions GX(s),GY(s),GW(s)
of X,Y,W, respectively.

(c) Assume GY(s) = exp(s − 1). Describe the steps in a numerical way to compute the
extinction probability for the process in part (b).

3. (6 points)

(a) For a counting process {Nt}t≥0 to be a Poisson process with parameter λ, we must
have N0 = 0 and Nt ∼ Poisson(tλ) for all t ≥ 0. Precisely describe two additional
properties so that if Nt has these properties it must be a Poisson process.

(b) Using the definition above, write down a proof that if {Nt}t≥0 is a Poisson process and
T is the arrival time of the first event, then T has an exponential distribution.

(c) Assume that customers arrive at a carnival stand as a Poisson process with parameter
λ. Each customer has a probability 0.01 of winning a grand price, a probability 0.1
of winning a smaller price, and a probability 0.89 of not winning. Find and simplify
the formula for the following:
Given that no grand prices are won during the first hour of operation, and the first
grand price is won before the end of the second hour, find the probability that the
second grand price is also won before the end of the second hour.

4. (6 points) A continuous-time Markov chain has states 1,2,3,4,5. The expected holding
times for these states are 3,2,1,1,2, respectively. The embedded chain has transition matrix

P̃ =


0 1 0 0 0
1 0 0 0 0
0 0 0 1/2 1/2
0 0 1/2 0 1/2
0 0 1/2 1/2 0

 .
Let v = (3/7, 2/7, 1/14, 1/14, 1/7).



(a) Prove that v is a stationary distribution for the continuous-time Markov chain.

(b) Prove that v is not a limiting distribution for the continuous-time Markov chain.

(c) Find limt→∞ Pr[Nt = 3 | N0 = 4].

5. (6 points) Each round in a game works as follows: You first pay 1 kroner. Then with a
probability 1/10 you win 10 kroner and with a probability 9/10 you win nothing. Let Xi

denote your total winnings or losses after i rounds.

(a) Compute the expectation and variance of Xi.

(b) Write Yi = aXi for some a > 0, and find the a such that the variance of Yi is i for all i.

(c) What does the Donsker invariance principle say about the behaviour of Yi when i is
large?

(d) Use the above to find an (approximate) value m so that with 95% probability the total
winnings will never go above m during 10000 played rounds. (You may use that a
variable with a standard normal distribution is in the interval [−1.96, 1.96] with 95%
probability).



Appendix: Some probability distributions

The Beta distribution
If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =
(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)
Γ(α)Γ(β)Γ(n + α + β)

.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =
(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

pα1−1
1 pα2−1

2 · · · pαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).

The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.



The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β).

The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Negative Binomial distribution
A stochastic variable x taking on as possible values any nonnegative integer has a Negative
Binomial distribution if its probability mass function is given by

π(x | r, p) =
(
x + r − 1

x

)
· (1 − p)x pr =

Γ(x + r)
Γ(x + 1)Γ(r)

(1 − p)x pr

where r > 0 and p ∈ (0, 1) are parameters.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ). The Poisson distribution has expecta-
tion λ and variance λ.



Petter Mostad
Applied Mathematics and Statistics
Chalmers and GU

Suggested solutions to
MVE550 Stochastic Processes and Bayesian Inference

Re-exam August 22, 2022, 8:30 - 12:30

1. (a) We get

π(data | τ) =

3∏
i=1

Normal(xi; 4, 1/τ)

=

(
1
√

2π/τ

)3

exp
(
−
τ

2

(
x1 − 4)2 + (x2 − 4)2 + (x3 − 4)2

))
∝τ τ

3/2 exp
(
−
τ

2

(
1.72 + 1.12 + 3.92

))
= τ3/2 exp(−9.655τ).

This means that the likelihood π(data | τ) is proportional to the probability density
Gamma(τ; 5/2, 9.655).

(b) To compute this probability you need to find the posterior predictive probability. To
find this, you first need to find a posterior for τ, and this means you need to assume
some prior. A choice corresponding with the computation in (a) is to choose a flat
prior on the positive real values as a prior: With such a prior, the posterior becomes
Gamma(τ; 5/2, 9.655).
The posterior predictive then becomes

π(x | data) =
∫ ∞

0
Normal(x; 4, 1/τ) Gamma(τ; 5/2, 9.655) dτ

and the required probability can be computed as∫ ∞

8
π(x | data) dx.

(One may provide more detail in several ways: One is to write∫ ∞

8

∫ ∞

0
Normal(x; 4, 1/τ) Gamma(τ; 5/2, 9.655) dτ dx

=

∫ ∞

0

[∫ ∞

8
Normal(x; 4, 1/τ) dτ

]
Gamma(τ; 5/2, 9.655) dx

and note that this can be computed in R as a numerical integral of



(1-pnorm(8,4,1/sqrt(tau)))*dgamma(tau, 5/2, 9.655).

Another is to compute

π(x | data) =
∫ ∞

0

1
√

2π/τ
exp

(
−
τ

2
(x − 4)2

) 9.6555/2

Γ(5/2)
τ3/2 exp(−9.655τ) dτ

=
9.6555/2

√
2πΓ(5/2)

∫ ∞

0
τ3−1 exp

(
−τ(9.655 + (x − 4)2/2)

)
dτ

=
9.6555/2

√
2πΓ(5/2)

·
Γ(3)

(9.655 + (x − 4)2/2)3 .

A third is to express this integral as a non-centered t-distribution.)

(c) A simple procedure is to use gridding: Make a uniform 2D grid for µ in the interval
[2, 6] and τ in the interval [0.1, 10], for example with 100 grid points in each direction,
for a total of 10000 grid points. Then compute the likelihood function

π(data | µ, τ) =
3∏

i=1

Normal(xi; µ, 1/τ)

in each grid point, and normalize so that the values sum to 1. Then compute the sum
at the grid points where µ > 4.

2. (a) We get for the probability generating function

GX(s) = 0.1 + 0.5s + 0.4s2

and then

GX(s) − s = 0.1 · (1 + 5s + 4s2) − s
= 0.1 · (1 − 5s + 4s2)
= 0.1 · (s − 1)(4s2 + 4s − 1)
= 0.1 · (s − 1) · 4 · (s + 1/2 +

√
2/2)(s + 1/2 −

√
2/2)

We see from this that the smallest positive root of GX(s) = s, and thus the probability
of extinction, is

√
2/2 − 1/2.

(b) We get

GW(s) = E(sW) = E(E(sW | Y)) = E
(
E

(
s
∑Y

i=1 Xi | Y
))

= E

E  Y∏
i=1

sXi | Y)

 = E

 Y∏
i=1

E(sXi)

 = E
(
GX(s)Y

)
= GY(GX(s))



(c) By considering two consecutive generations as one generation, we see that the branch-
ing process can be viewed as a standard branching process with offspring process
given by W. We also have

GW(s) = GY(GX(s)) = GY(0.1 + 0.5s + 0.4s3) = exp(0.5s + 0.4s3 − 0.9).

To find the smallest positive root of GW(s) we can apply for example the R function
uniroot to

f (s) = exp(0.5s + 0.4s3 − 0.9) − s

on the interval [0, 1].

3. (a) • Stationary increments: For all s, t > 0 Nt+s − Ns has the same distribution as Nt.
• Independent increments: For 0 ≤ q < r ≤ s < t, Nt − Ns and Nr − Nq are

independent.

(b) For any t > 0 we have that

Pr[T > t] = Pr[Nt = 0] = e−tλ,

using the probability mass function for the Poisson. Thus

Pr[T ≤ t] = 1 − e−tλ

and taking derivative we get for the probability density for T

π(T ) = λe−tλ.

Comparing with the density for the exponential distribution, we get T ∼ Exponential(λ).

(c) As the winning of grand prices is a Poisson process and such processes have station-
ary increments, we can ignore the first hour and start the Poisson process at the start
of the second hour. The required probability is the probability of two or more grand
prices during this hour divided by the probability of one or more grand prices during
this hour. If (Nt)t≥0 is the Poisson process for grand prices, this can be computed as

Pr[N1 ≥ 2]
Pr[N1 ≥ 1]

=
1 − Pr[N1 = 0] − Pr[N1 = 1]

1 − Pr[N1 = 0]
=

1 − e−0.01λ(1 + 0.01λ)
1 − e−0.01λ ,

4. (a) From the expected holding times we get that (q1, q2, . . . , q5) = (1/3, 1/2, 1, 1, 1/2).
Using P̃ we can now compute the generator matrix as

Q =


−1/3 1/3 0 0 0
1/2 −1/2 0 0 0
0 0 −1 1/2 1/2
0 0 1/2 −1 1/2
0 0 1/4 1/4 −1/2

 .



We then get

vQ = (−
1
3

3
7
+

1
2

2
7
,

1
3

3
7
−

1
2

2
7
,−

1
14
+

1
2

1
14
+

1
4

1
7
,

1
2

1
14
−

1
14
+

1
4

1
7
,

1
2

1
14
+

1
2

1
14
−

1
2

1
7

) = 0

proving that v is a stationary distribution.

(b) v cannot be a limiting distribution, as this Markov chain has no limiting distribution.
The reason is that it is reducible, it has the two closed communication classes {1, 2}
and {3, 4, 5}. The most direct proof that the chain does not have a limiting distribution
is to observe that the state when t → ∞ depends on the starting state: It cannot move
out of the communication class it starts in.

(c) When N0 = 3, we know that the chain starts in the second communication class.
Restricting the Markov chain to this class, it has generator matrix

Q′ =

−1 1/2 1/2
1/ −1 1/2
1/4 1/4 −1/2

 .
We have seen above that (1/14, 1/14, 1/7)Q′ = 0. Normalizing so that this vector is
a probability vector, we get that v′ = 14/4 · (1/14, 1/14, 1/7) = (1/4, 1/4, 1/2) is the
unique limiting distribution for the restricted chain. Thus

lim
t→∞

Pr[Nt = 3 | N0 = 4] = 1/4.

5. (a) Let Z denote the outcome of a single round. Then

E(Xi) = i E(Z) = i
(
9 ·

1
10
− 1 ·

9
10

)
= 0

and

Var(Xi) = i Var(Z) = i(E(Z2) − E(Z)2) = i E(Z2) = i
(
92 ·

1
10
+ 1 ·

9
10

)
= 9i.

(b) We get Var(Yi) = a2 Var(Xi) = a29i, so setting a = 1/3 will lead to Var(Yi) = i.

(c) When i is large, Yi behaves approximately like Brownian motion Bt with t = i.

(d) The maximum value of a Brownian motion on the interval [0, 10000] can be written
M10000 where we know from theory that M10000 has the same distribution as |B10000|.
But B10000 is normally distributed with expectation 0 and variance 10000, i.e., stan-
dard deviation

√
10000 = 100. Using the hint, we know that B10000 is in the interval

[−196, 196] with 95% probability, so that

Pr[M10000 < 196] = Pr[|B10000| < 196] = 0.95.

Thus, approximately, the maximum value of Yi is below 196 with 95% probability
during 10000 played rounds, so that the maximum value of Xi is below 3 · 196 = 588
with 95% probability during 10000 played rounds.


