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MVE550 Stochastic Processes and Bayesian Inference

Exam April 13, 2022, 8:30 - 12:30
Examiner: Petter Mostad, phone 031-772-3579, visits exam at 9:30 and 11:30

Allowed aids: Chalmers-approved calculator
Total number of points: 30. At least 12 points are needed to pass.

See appendix for some information about some probability distributions

1. (4 points) Assume X has a Negative Binimial distribution with parameters r and p, written
X ∼ Negative-Binomial(r, p). See the appendix for the definition of the Negative Binomial
distribution. We assume r is fixed and known, while p is an unknown parameter.

(a) Prove that for the parameter p, the Beta1 family of distributions is a conjugate family.

(b) Assume that r = 4 and that we use a uniform prior on p. Assume we make three
independent observations 4, 2, 3 of X. What is the posterior distribution for p given
these observations?
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Figure 1: The transition graph for the Markov chain of question 2.

1There was an error in the original exam: It said "Binomial" instead of "Beta"



2. (6 points) The transition graph of a discrete-time infinite state space Markov chain is given
in Figure 1.

(a) We would like to compute the probability that, if the chain starts in state 1 at time
step zero, it is in state 4 at time step 9, and then continues to2 state 6 at time step
14. Write down a way to compute this. You may express your answer as an ex-
pression consisting of finite-dimensional matrices and vectors containing numbers,
and operations on these such as multiplication, addition, subtraction, inversion, and
exponentiation. Alternatively, you may directly write an R command which would
compute the result.

(b) Which are the communication classes of the Markov chain? Which of these are open
and which are closed? Which states are transient, and which are recurrent?

(c) Write down a way to compute the expected number of steps until the chain reaches
state 6, if it starts at state 1. You may express your answer as an expression consist-
ing of finite-dimensional matrices and vectors containing numbers, and operations
on these such as multiplication, addition, subtraction, inversion, and exponentiation.
Alternatively, you may directly write an R command which would compute the result.

3. (6 points) A Branching process has offspring process where the probabilities of zero, one,
or two offspring are 1 − a, 0, and a, respectively, where 0 < a < 1.

(a) For what values of a is the process critical, supercritical, and subcritical?

(b) What is the expected size of the n’th generation?

(c) What is the probability of exctinction, for the different possible values of a?

(d) Change the offspring process so that to the offspring described above are indepen-
dently added offspring according to a Poisson process with parameter 2. If we set
a = 2/3, describe how to compute the probability of extinction. Your description
may include a numerical computation that you do not actually perform, only outline.

4. (4 points) Let Nt be a Poisson process with parameter λ. Let X1, X2, . . . be the waiting
times until the first arrival, between the first and second arrivals, and so on.

(a) Compute E(N2N4).

(b) Compute E(X2X4).

(c) Select uniformly at random one of the arrivals that have occurred before time 4.
Compute its expected arrival time.

5. (6 points) A computer system can operate in its standby state S 0 or in one of k different
active states S 1, S 2, . . . , S k, where k is some positive integer. From S 0 it changes to S i at
the rate 4/i, and from S i it changes back to S 0 at the rate i/4. No other transitions are
possible.

2The formulation was slightly different, and possible to misunderstand, in the original exam.



(a) Write down the generator matrix Q for the continuous-time Markov chain above
when k = 4.

(b) The probability that the system is in state S 1 at time t, is it independent of the state
the system is at time zero, when t → ∞? Prove or disprove.

(c) Compute the long-term probability that the system is in state S 0, assuming that k = 4.

(d) Is the Markov chain time reversible or not? Explain your answer.

6. (4 points)

(a) Write down the definition of geometric Brownian motion.

(b) If Gt denotes geometric Brownian motion, compute E(Gt).



Appendix: Some probability distributions

The Beta distribution
If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).

The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =
(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)
Γ(α)Γ(β)Γ(n + α + β)

.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =
(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

pα1−1
1 pα2−1

2 · · · pαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).

The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.



The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β).

The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Negative Binomial distribution
A stochastic variable x taking on as possible values any nonnegative integer has a Negative
Binomial distribution if its probability mass function is given by

π(x | r, p) =
(
x + r − 1

x

)
· (1 − p)x pr =

Γ(x + r)
Γ(x + 1)Γ(r)

(1 − p)x pr

where r > 0 and p ∈ (0, 1) are parameters.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ). The Poisson distribution has expecta-
tion λ and variance λ.
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1. (a) Assume that we use the prior p ∼ Beta(α, β) so that

π(p) =
Γ(α + β)
Γ(α)Γ(β)

pα−1(1 − p)β−1.

To prove conjugacy we need to prove that the posterior is then also a Beta distribution.
We get

π(p | x) ∝p π(x | p)π(p)

∝p

(
x + r − 1

x

)
· (1 − p)x pr pα−1(1 − p)β−1

∝p pα+r−1(1 − p)β+x−1

∝p Beta(p;α + r, β + x)

which shows that the posterior is a Beta distribution.

(b) Note that the Uniform distribution on [0, 1] is the same as a Beta(1, 1) distribution.
So using α = 1 and β = 1 and repeated Bayesian update of the parameter, we get the
posterior

π(p | data) = Beta(1 + 4 + 4 + 4, 1 + 4 + 2 + 3) = Beta(13, 10).

2. (a) First of all, for the purposes of this question, we may change the Markov chain by
removing states above 7 and making state 7 into an absorbing state: This is OK
because once the chain reaches state 7 it will never again return to lower states.
Let P be the transition matrix of this simplified chain:

P =



0 0.2 0.8 0 0 0 0
0.8 0 0.2 0 0 0 0
0 0.8 0 0.2 0 0 0
0 0 0 0.8 0.2 0 0
0 0 0 0.8 0 0.2 0
0 0 0 0 0 0 1
0 0 0 0 0 0 1


Then the required probability is (P9)14(P5)46. This can be computed in R with



matrixpower(P, 9)[1,4]*matrixpower(P, 5)[4,6]

provided matrixpower computes the power of a matrix. We might also write this
out as a matrix product

v1PPPPPPPPPvt
4v4PPPPPvt

6

where

v1 =
[
1 0 0 0 0 0 0

]
v4 =

[
0 0 0 1 0 0 0

]
v6 =

[
0 0 0 0 0 1 0

]
.

(b) The communication classes are {1, 2, 3}, {4, 5}, {6}, {7}, {8}, {9}, . . . . They are all
open, and all states are transient, as for any states there is a nonzero probability that
one will never return to this state.

(c) Making state 6 absorbing, we get

Q =


0 0.2 0.8 0 0

0.8 0 0.2 0 0
0 0.8 0 0.2 0
0 0 0 0.8 0.2
0 0 0 0.8 0


and the answer is given by the sum of the first row of the fundamental matrix F =
(I − Q)−1. In R we might write

sum(solve(diag(5)-Q)[1,])

A mathematical way to write this might be

[1 0 0 0 0](I − Q)−1


1
1
1
1
1

 .

3. (a) If X is a random variable with the offspring distribution have that µ = E [X] = 0 · (1−
a)+ 1 · 0+ 2 · a = 2a. We compare this number with 1, and conclude that the process
is critical if a = 1/2, supercritical if a > 1/2, and subcritical if a < 1/2.

(b) The expected size is
µn = (2a)n.



(c) We first find the probability generating function:

G(s) = (1 − a)s0 + 0s1 + as2 = 1 − a + as2.

Then we know that the extinction probability is the smallest positive root of G(s) = s.
We get (using that we know s = 1 is always a root)

1 − a + as2 = s
as2 − s + 1 − a = 0

(s − 1)(as + a − 1) = 0.

As as + a − 1 = 0 solves to
s =

1 − a
a
=

1
a
− 1,

we see that if a ≤ 1/2 the extinction probability is 1, while if a > 1/2 the extinction
probability is 1/a − 1.

(d) Let X be the original number of offspring and Y be the offspring from the Poisson
process. Then

G(s) = E
[
sX+Y

]
= E

[
sX

]
E

[
sY

]
= (1 −

2
3
+

2
3

s2)
∞∑

k=0

ske−2 2k

k!

=

(
1
3
+

2
3

s2
)

e−2
∞∑

k=0

(2s)k

k!

=
1 + 2s2

3
e2e2s =

1
3

(1 + 2s2)e2(s−1)

We want to find the smallest positive root of G(s) = s, so we study

f (s) =
1
3

(1 + 2s2)e2(s−1) − s.

As E [X + Y] = 4
3 + 2 > 1 and the process is supercritical we know f (s) will have a

root in the interval (0, 1). In R one may use for example the function uniroot, on
the function f (s), making sure to aviod the root s = 1.

4. (a) We can compute

E [N2N4] = E [N2(N4 − N2 + N2)]
= E

[
N2(N4 − N2) + N2

2

]
= E [N2] E [N4 − N2] + E

[
N2

2

]
= E [N2] E [N2] + Var [N2] + E [N2]2

As N2 ∼ Poisson(2λ) we have from the appendix that E [N2] = 2λ and Var [N2] = 2λ,
so the answer becomes

E [N2N4] = (2λ)2 + 2λ + (2λ)2 = 8λ2 + 2λ.



(b) As X2 ∼ Exponential(λ) and independently X4 ∼ Exponential(λ) we get E [X2X4] =
E [X2] E [X4] = 1

λ2 .

(c) A uniformly selected arrival has a uniform distribution on [0, 4]. Its expected value
is thus 4/2 = 2.

5. (a) We get

Q =


−25/3 4 2 4/3 1

1/4 −1/4 0 0 0
1/2 0 −1/2 0 0
3/4 0 0 −3/4 0
1 0 0 0 −1


(b) As the Markov chain is a finite irreducible continuous-time Markov chain it has a

unique stationary distribution which is the limiting distribution. This implies that as
t → ∞ the state it is in becomes independent of the starting state.

(c) We solve the system

v


1 4 2 4/3 1
1 −1/4 0 0 0
1 0 −1/2 0 0
1 0 0 −3/4 0
1 0 0 0 −1

 = [1 0 0 0 0]

were we write v = [v0, v1, v2, v3, v4]. We quickly get the equations

v1 = 16v0

v2 = 4v0

v3 =
16
9

v0

v4 = v0

Together with the equation v0 + v1 + v2 + v3 + v4 = 1 we get v0 =
9

214 , so the answer
is 9

214 .

(d) We see directly that the transition rate graph is a star in this case, i.e., a tree, so the
Markov chain is necessarily time reversible.

6. (a) A process Gt is geometric Brownian motion if there are parameters G0, µ, and σ so
that

Gt = G0etµ+σBt

where Bt is Brownian motion.



(b) We get

E(Gt) = E(G0etµ+σBt)
= G0etµE(eσBt)

= G0etµ
∫ ∞

−∞

eσs 1
√

2πt
exp

(
−

1
2t

s2
)

ds

= G0etµ 1
√

2πt

∫ ∞

−∞

exp
(
−

1
2t

(s2 − 2σts)
)

ds

= G0etµ 1
√

2πt

∫ ∞

−∞

exp
(
−

1
2t

(s − σt)2 + t
σ2

2

)
ds

= G0etµetσ2/2
∫ ∞

−∞

1
√

2πt
exp

(
−

1
2t

(s − σt)2
)

ds

= G0et(µ+σ2/2)


