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See appendix for some information about some probability distributions

1. (6 points) A Branching process Z0,Z1, . . . has an offspring process with expectation µ and
variance σ2.

(a) Compute E(Zn).

(b) Compute Var(Zn) in terms of µ, σ2, and Var(Zn−1).

(c) Compute Var(Zn) for n = 0, 1, 2, 3, 4. Guess at a general formula expressing Var(Zn)
in terms of µ, σ2, and n, and prove the formula by induction.

2. (6 points) Alex is trying to model the inflow of customers to his shop, which is open daily
10:00 - 18:00. He has a data file where he has recorded the arrival time of all customers
during the last 5 days. During these days, there have been a total of 23 customers arriving
before 14:00 and 44 after 14:00.

(a) Initially, Alex assumes his customers arrive according to a Poisson process with pa-
rameter λ customers per hour, using a prior π(λ) ∝λ 1/λ. Find the posterior probabil-
ity that λ > 1.2. You may express your answer in terms of a integral, or in terms of a
suitable R function (but make sure to simplify your answer).

(b) Alex observes he often has more customers in the afternoon, so he now wants to use
an inhomogenenous Poisson process where the rate of customer arrivals is λ before
14:00 and λµ after 14:00, with µ an extra parameter with prior π(µ) ∝µ 1/µ. Find an
expression proportional to the posterior density for pairs (µ, λ).

(c) Alex gets more ambitions and wants to use a model where the rate of customer ar-
rivals is λ, λµ1, λµ2, . . . , λµ7 for each of his 8 opening hours, respectively. Name
and give a brief outline of an algorithm with which Alex can obtain an approximate
sample from the posterior for his parameters θ = (λ, µ1, µ2, . . . , µ7).

3. (6 points) Chess games are played on an 8 × 8 board of black and white squares as shown
in Figure 1. A move of the knight piece consists of two steps in some direction and then
one step to the side, as illustrated in Figure 1. Some experimentation may convince you
that for any two squares there is a sequence of moves that may bring a knight from one



Figure 1: Illustration of the 8 × 8 chess board consisting of alternating black and white squares,
and the possible moves for a knight.

square to the other. Assume that a knight starts in the lower left corner of the board and
that at every time step it moves randomly, with equal probability, to each of the squares it
may move to.

(a) Is this a Markov chain? If so, is it an ergodic Markov chain, and does it have a
limiting distribution? Explain (prove) all parts of your answer.

(b) Assume we change the rules for how the knight can move by looping the board in all
directions, so that instead of being limited by the edge of the board the knight can
simply jump to the other side of the board. For example, possible moves from the
lower left corner are illustraded in Figure 2. With these changed rules, what is the
expected number of moves until the knight returns to its starting point at the lower
left corner?

(c) Going back to the original rules for moving the knight, compute the expected number
of moves until the knight returns to its starting point at the lower left corner. Note:
If you (to save time) just describe how to make such a computation, instead of doing
the whole computation, you will only lose one point.

4. (8 points) The rate graph for a continuous-time Markov chain is given in Figure 3. Your
answers to the questions below should consist of numbers or expressions which might



Figure 2: The extended moves for a knight positioned at the bottom left corner of the board:
The dark greed squares indicate the 8 possible positions the knight can move to. The light green
squares illustrate how these positions appear when the board is “looped” around its edges.

include matrices of numbers, matrix multiplication, matrix inversion, and similar.

(a) Write down the generator matrix Q. (List the states in the order A, B, C, D, E, F).

(b) Prove or disprove that the process is time reversible.

(c) What is the long-term proportion of time that the process will spend in state C?

(d) Assuming that the process is in state C, what is the expected time until the first time
it hits either state A or state F?

(e) Assuming that the process is in state C, what is the expected number of new visits to
states other than A it will make until it hits state A?

5. (4 points)

(a) Define a Brownian bridge.

(b) Describe briefly how one may simulate a realization of a Brownian bridge.

(c) If Xt is a Brownian bridge and 0 < s < r < 1, compute cov(Xs, Xr).
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Figure 3: The rate graph for the Markov chain of question 4.

Appendix: Some probability distributions

The Bernoulli distribution

If x ∈ {0, 1} has a Bernoulli distribution with parameter 0 ≤ p ≤ 1, then the probability mass
function is

π(x) = px(1 − p)1−x.

We write x | p ∼ Bernoulli(p) and π(x | p) = Bernoulli(x; p).

The Beta distribution

If x ∈ [0, 1] has a Beta distribution with parameters with α > 0 and β > 0 then the density is

π(x | α, β) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1.

We write x | α, β ∼ Beta(α, β) and π(x | α, β) = Beta(x;α, β).



The Beta-Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Beta-Binomial distribution, with n a positive integer and parameters
α > 0 and β > 0, then the probability mass function is

π(x | n, α, β) =

(
n
x

)
Γ(x + α)Γ(n − x + β)Γ(α + β)

Γ(α)Γ(β)Γ(n + α + β)
.

We write x | n, α, β ∼ Beta-Binomial(n, α, β) and π(x | n, α, β) = Beta-Binomial(x; n, α, β).

The Binomial distribution
If x ∈ {0, 1, 2, . . . , n} has a Binomial distribution, with n a positive integer and 0 ≤ p ≤ 1, then
the probability mass function is

π(x | n, p) =

(
n
x

)
px(1 − p)n−x.

We write x | n, p ∼ Binomial(n, p) and π(x | n, p) = Binomial(x; n, p).

The Dirichlet distribution
If x = (x1, x2, . . . , xn) has a Dirichlet distribution, with xi ≥ 0 and

∑n
i=1 xi = 1 and with parameters

α = (α1, . . . , αn) with α1 > 0, . . . , αn > 0, then the density function is

π(x | α) =
Γ(α1 + α2 + · · · + αn)
Γ(α1)Γ(α2) · · · Γ(αn)

pα1−1
1 pα2−1

2 · · · pαn−1
n .

We write x | α ∼ Dirichlet(α) and π(x | α) = Dirichlet(x;α).

The Exponential distribution
If x ≥ 0 has an Exponential distribution with parameter λ > 0, then the density is

π(x | λ) = λ exp(−λx)

We write x | λ ∼ Exponential(λ) and π(x | λ) = Exponential(x; λ). The expectation is 1/λ and
the variance is 1/λ2.

The Gamma distribution
If x > 0 has a Gamma distribution with parameters α > 0 and β > 0 then the density is

π(x | αβ) =
βα

Γ(α)
xα−1 exp(−βx).

We write x | α, β ∼ Gamma(α, β) and π(x | α, β) = Gamma(x;α, β).



The Geometric distribution
If x ∈ {1, 2, 3, . . . } has a Geometric distribution with parameter p ∈ (0, 1), the probability mass
function is

π(x | p) = p(1 − p)x−1

We write x | p ∼ Geometric(p) and π(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 − p)/p2.

The Normal distribution
If the real x has a Normal distribution with parameters µ and σ2, its density is given by

π(x | µ, σ2) =
1

√
2πσ2

exp
(
−

1
2σ2 (x − µ)2

)
.

We write x | µ, σ2 ∼ Normal(µ, σ2) and π(x | µ, σ2) = Normal(x; µ, σ2).

The Poisson distribution
If x ∈ {0, 1, 2, . . . } has Poisson distribution with parameter λ > 0 then the probability mass
function is

e−λ
λx

x!
.

We write x | λ ∼ Poisson(λ) and π(x | λ) = Poisson(x; λ).
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1. (a) We get

E [Zn] = E

Zn−1∑
i=1

Xi

 = E

E  k∑
i=1

Xi | Zn−1 = k

 = E

 k∑
i=1

E [Xi] | Zn−1 = k


= E

[
kµ | Zn−1 = k

]
= E

[
µZn−1

]
= µE [Zn−1] .

Application of recursion and the fact that E [Z0] = E [1] = 1 gives

E [Zn] = µn.

(b) We get

Var [Zn] = Var

Zn−1∑
i=1

Xi


= Var

E  k∑
i=1

Xi | Zi−1 = k

 + E

Var

 k∑
i=1

Xi | Zn−1 = k


= Var

[
µZn−1

]
+ E

[
σ2Zn−1

]
= µ2 Var [Zn−1] + µn−1σ2.

(c) We get directly Var [Z0] = 0 and Var [Z1] = Var [X1] = σ2 Using the result from (b)
repeatedly we get

Var [Z2] = µ2σ2 + µσ2

Var [Z3] = µ4σ2 + µ3σ2 + µ2σ2

Var [Z4] = µ6σ2 + µ5σ2 + µ4σ2 + µ3σ2

We hypothesize that for n ≥ 1

Var [Zn] = σ2
2n−2∑
i=n−1

µi

and prove the formula by induction: First, it is true for n = 1, and secondly, assuming



it is true for n − 1 we get

Var [Zn] = µ2 Var [Zn−1] + µn−1σ2

= µ2σ2
2(n−1)−2∑

i=n−2

µi + µn−1σ2

= σ2

2n−2∑
i=n

µi + µ2


= σ2

2n−2∑
i=n−1

µi

so the proof is complete. Note that we can write the result as

Var [Zn] = σ2
2n−2∑
i=n−1

µi = σ2µn−1
n−1∑
i=0

µi = σ2µn−1µ
n − 1
µ − 1

.

2. (a) There have been a total of 23 + 44 = 67 customers during the 5 · 8 = 40 hours of
observation. Thus the likelihood function is Poisson(67; 40λ). We get

π(λ | data) ∝λ π(data | λ)π(λ)

∝λ e−40λ (40λ)67

67!
·

1
λ

∝λ e−40λλ67−1

so that
π(λ | data) = Gamma(λ; 67, 40).

The probability p asked for can be expressed as an integal as

p =

∫ ∞

1.2

4067

67!
λ67−1 exp(−40λ) dλ

or in R

1 - pgamma(1.2, 67, 40)

(b) We get for the posterior

π(λ, µ | data) ∝λ,µ π(data | λ, µ)π(λ, µ)

∝λ,µ Poisson(23; 20λ) · Poisson(44, 20λµ) ·
1
λ
·

1
µ

∝λ,µ e−20λ(20λ)23e−20λµ(20λµ)44 1
λµ

= exp(−20λ(1 + µ))λ67−1µ44−1



(c) Alex might use a Metropolis Hastings algorithm to obtain such an posterior. The
algorithm would start with reasonable values for the parameters (for example the
value 1) and use a proposal density q(θ∗ | θ) in each iteration. Generally, the algorithm
would iterate between making a proposed new density according to q(θ∗ | θ) and
accepting it with probability

a = min
(
1,
π(θ∗ | data)q(θ | θ∗)
π(θ | data)q(θ∗ | θ)

)
.

If θ∗ is not accepted, the old value θ would be repeated.
For the posterior π(θ | data) we get (writing µ0 = 1, assuming the counts of the
different hours are c1, c2, . . . , c8, respectively, and using the priors µi ∝µi 1/µi)

π(θ | data) ∝θ
8∏

i=1

Poisson(ci; 5λµi−1) ·
1

λµ1 . . . µ7

∝θ

8∏
i=1

e−5λµi−1(5λµi−1)ci ·
1

λµ1 . . . , µ7

∝θ λ67−1µc2−1
1 µc3−1

2 . . . µc8−1
7 exp(−5λ(1 + µ1 + · · · + µ7))

An alternative would be to use Gibbs sampling, in which case one would cycle
through simulating from the conditional distribution of each of the parameters given
fixed values for the others. From the expression of the posterior above we see that
these conditional distributions would all be Gamma distributions.

3. (a) This will be a Markov chain, as the position at each time step only depends on the
position at the previous time step. However, this Markov chain is not ergodic: In
fact it is periodic, of period 2, as the knight will alternate between black and white
squares. Because of the periodicity, there is also no limiting distribution.

(b) The Markov chain may be viewed as a random walk on a graph: The graph would
consist of all the 64 squares in the board game, and each square has a degree 8 because
of the extended way we allow the knight to move. Given the comment in the question
about getting from any square to any other, the Markov chain is irreducible. Thus
there is a unique stationary distribution. Because all the 64 states have degree 8,
the stationary distribution is uniform. The long-term proportion of steps spent at the
starting square is 1/64, and the expected return time to the starting square becomes
64.

(c) It is still possible to look at this as an irreducible random walk on a graph, but now
the states do not all have degree 8. To do computations, one needs to find the degree
of each of the 64 states. If d denotes the sum of all the degrees, we know that the
long-term proportion of steps spent at the start square is 2

d , as the start square has
degree 2. Thus the expected number of steps to return to the start square becomes
d/2.



In fact, there are 4 squares with degree 2, 3 with degree 3, 20 with degree 4, 16
with degree 6, and 16 with degree 8. This means that d = 336 and that the expected
number of steps to return to the start square is 168.

4. (a) We get

Q =



−2 2 0 0 0 0
1 −6 3 2 0 0
0 4 −4 0 0 0
0 1 0 −4 1 2
0 0 0 3 −3 0
0 0 0 4 0 −4


.

(b) As the rate graph is a tree, the process is time reversible.

(c) It is clear that the process is irreducible and ergodic. To find the limiting distribution
we find the v with positive values summing to 1 such that vQ = 0. We can do this by
replacing the first column of Q with ones, producing Q′, and then requiring that vQ′

should be the vector (1, 0, 0, 0, 0, 0). Finally, to find the long term proportion of time
that the process will spend in C, we take the third element of v. In matrix terms we
need to compute

[
1 0 0 0 0 0

]


1 2 0 0 0 0
1 −6 3 2 0 0
1 4 −4 0 0 0
1 1 0 −4 1 2
1 0 0 3 −3 0
1 0 0 4 0 −4



−1 

0
0
1
0
0
0


.

(d) To find this expected time we make states A and F absorbing states. Removing rows
and columns connected to these states we are left with a matrix

Q0 =


−6 3 2 0
4 −4 0 0
1 0 −4 1
0 0 3 −3

 .
The matrix F of expected times spent in each state before absorbtion is given by
F = −Q−1. The answer is given by the sum of the second line (corresponding to state
C) of this matrix, so we must compute

−
[
0 1 0 0

] 
−6 3 2 0
4 −4 0 0
1 0 −4 1
0 0 3 −3


−1 

1
1
1
1

 .



(e) To answer this question, we first find the transition matrix of the embedded discrete-
time Markov chain, which becomes

P̃ =



0 1 0 0 0 0
1/6 0 1/2 1/3 0 0
0 1 0 0 0 0
0 1/4 0 0 1/4 1/2
0 0 0 1 0 0
0 0 0 1 0 0


.

The fundamental matrix when making A into an absorbing state will be F = (I −
P̃−A)−1, where P̃−A is P̃ with the row and columnd representing A removed. Our
desired answer is the sum of the second row of this matrix, i.e, the answer is

[
0 1 0 0 0

]


1 −1/2 −1/3 0 0
−1 1 0 0 0
−1/4 0 1 −1/4 −1/2

0 0 −1 1 0
0 0 −1 0 1



−1 
1
1
1
1
1

 .

5. (a) A Brownian bridge is Brownian motion on the interval [0, 1] conditional on B1 = 1.

(b) One may simulate Brownian motion as usual and then for each t subtract tB1 from
the simulated values.

(c) Using that we can write Xt = Bt − tB1 we get

Cov [Xs, Xr] = Cov [Bs − xB1, Br − rB1]
= Cov [Bs, Br] − s Cov [B1, Br] − r Cov [Bs, B1] + sr Cov [B1, B2]
= s − sr − rs + sr Var [B1]
= s − sr


