Petter Mostad

Applied Mathematics and Statistics
Chalmers and GU

MVESS0 Stochastic Processes and Bayesian Inference

Exam January 9, 2021, 8:30 - 12:30
Examiner: Petter Mostad, phone 031-772-3579
Allowed aids: All aids are allowed.

For example you may access teaching material on any format and you may use R for compu-
tation. However, you are not allowed to communicate with any person other than the examiner
and the exam guard. Total number of points: 30. To pass, at least 12 points are needed. You need
to explain how you derive your answers, i.e., show the steps in computations, unless explicitly
stated otherwise. There is an appendix containing relevant information about some probability
distributions.

1. (4 points) Assume a variable x > 0 has density
926—0/)5
3

(x| 6) =

where 6 > 0 is a parameter.

(a) Write down a proof that the Gamma family of densities is a conjugate family to the
likelihood above.

(b) Assuming 8 ~ Gamma(a, ) and that x | 6 has the distribution above, compute and
simplify the marginal density for x.

2. (7 points) A Markov chain is defined as a random walk on the weighted undirected graph
displayed in Figure 1. Note that the nodes are called A, B, C and the weights are wy, ..., wg
where these are positive numbers.

(a) Given specific values for wy, ..., ws, what is the limiting distribution for the Markov
chain?

(b) Assume the chain has been observed for 28 steps, and that the table below lists counts
of observed transitions from the node given on the left column to the node given on
the top row.
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Figure 1: The graph for question 2.

Assume we use a prior for the weights with density 7(wy, ..., wg) = exp(—=w; — -+ - — wg).
Write down and simplify a function proportional to the posterior density for the
weights wy, ..., we.

(c) Describe in detail an algorithm that computes the (approximate) expected posterior
limiting probability for the chain to be in state A. You may use R code or pseudo-code
to give a precise description of your algorithm. You don’t need to run the algorithm.

(d) In the situation above, we could have assumed that the Markov chain was represented
by a stochastic matrix P and used Dirichlet priors for the rows of P. What, if any,
would be the difference for the interpretation of the result? !

3. (6 points) Consider the Markov chain with states space {1,2,...,n} and transition graph
given in Figure 2, where p is a parameter satisfying 0 < p < 1.
(a) For each possible value of p determine the number of communication classes.
(b) For each possible value of p and each state, determine its period.

(c) For each possible value of p compute all possible stationary distributions for the
chain, if any exist.

(d) For each possible value of p compute all possible limiting distributions for the chain,
if any exist.

I A better formulation of this question, unfortunately not used in the actual exam, would have been “What, if any,
would be the difference in the posterior model if the amount of data approached infinity?”
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Figure 2: The transition graph for question 3

4. (4 points)

(a) Assume the offspring process in a Branching process has probability 1/4 for zero
offspring, probabiliy 1/2 for 1 offspring, and probability 1/4 for 3 offspring. Calculate
the probability that the process will eventually go extinct.

(b) Assume another Branching process uses as offspring process in the first generation a
Poisson distribution with parameter A. After this, the offspring distribution of (a) is
used. Compute the probability that this branching process will go extinct.

5. (5 points) Adam is the main salesperson in a store that sells candy. Customers arrive
according to independent Poisson processes. Adult customers arrive on average with one
customer every 3 minutes while on average one child arrives every minute. The time it
takes to service a customer is exponentially distributed. For adult customers it takes on
average 2 minutes, while for child customers it takes on average 1 minute. If Adam is
busy with a customer when another customer arrives, that customer moves on to another
salesperson.

(a) Compute the long time average proportion of time Adam serves adult customers.

(b) Write down the transition rate graph for the process above, and also the graph with
transition probabilities for a Poisson subordinated process to the process above.

(c) Based on the above, give a short proof that the continuous-time Markov process you
derived above is time reversible?.

2 A better formulation of the question would have been “give a proof that is as short as possible”



6. (2 points) Assume N, is a Poisson process with parameter 4 = 2. Prove that N, — 2t is a
martingale with respect to V.

7. (2 points) Prove that the stochastic process (X;)o<;<; defined by conditioning Brownian
motion on By = a for some real a is identical to the process Y, = B,—tB; +tafor0 <t < 1.



Appendix: Some probability distributions

The Bernoulli distribution

If x € {0, 1} has a Bernoulli distribution with parameter 0 < p < 1, then the probability mass
function is

m(x) = p*(1-p)'™
We write x | p ~ Bernoulli(p) and (x| p) = Bernoulli(x; p).

The Beta distribution

If x € [0, 1] has a Beta distribution with parameters with @ > 0 and 8 > 0 then the density is

I
e 00B) = o (1=

We write x | @, 8 ~ Beta(a, 8) and n(x | @, 8) = Beta(x; a, B).

The Beta-Binomial distribution

If x € {0,1,2,...,n} has a Beta-Binomial distribution, with n a positive integer and parameters
a > 0 and g > 0, then the probability mass function is
I'x+a)l'(n—-x+pB)I'(a+p)

Fa)Brn+a+p

(x| o, f) = (Z)

We write x | n, @, 8 ~ Beta-Binomial(n, @, 8) and n(x | n, @, ) = Beta-Binomial(x; n, , ).

The Binomial distribution

If x € {0,1,2,...,n} has a Binomial distribution, with n a positive integer and 0 < p < 1, then
the probability mass function is

n(x|n,p)= (Z)p"(l -p)"

We write x | n, p ~ Binomial(n, p) and (x| n, p) = Binomial(x; n, p).

The Dirichlet distribution

If x = (x1, x2, ..., x,) has a Dirichlet distribution, with x; > 0 and }?_, x; = 1 and with parameters
a=(ay,...,a,) witha; >0, ..., @, > 0, then the density function is

I'lag+ar+---+ay) -1 _ar—1
Pq )2 :
[(a)l(as) - - T'(ay,)

We write x | @ ~ Dirichlet(«) and n(x | @) = Dirichlet(x; ).

n(x | @) = ~pa



The Exponential distribution
If x > 0 has an Exponential distribution with parameter A > 0, then the density is
(x| A) = Aexp(—A1x)
We write x | 4 ~ Exponential(1) and n(x | 4) = Exponential(x; 1). The expectation is 1/4 and

the variance is 1/12.

The Gamma distribution

If x > 0 has a Gamma distribution with parameters @ > 0 and 8 > 0O then the density is

(1

n(x|aB) = B X! exp(—Bx).

I'(a)

We write x | @, 8 ~ Gamma(a, 8) and 7(x | @, ) = Gamma(x; @, ).

The Geometric distribution

If x € {1,2,3,...} has a Geometric distribution with parameter p € (0, 1), the probability mass
function is

n(x|p)=pl-p’

We write x | p ~ Geometric(p) and n(x | p) = Geometric(x; p). The expectation is 1/p and the
variance (1 — p)/p>.

The Normal distribution

If the real x has a Normal distribution with parameters u and ¢, its density is given by

1 1
m(x | o) = WCXP (—F(X—,U)Z)-
o

We write x | u, 0> ~ Normal(u, 0?) and ni(x | u, 0*) = Normal(x; , 0°2).

The Poisson distribution

If x € {0,1,2,...} has Poisson distribution with parameter 4 > 0O then the probability mass
function is
a4
e —.
x!
We write x | 4 ~ Poisson(1) and m(x | 1) = Poisson(x; A).
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1. (a) Assuming that 8 ~ Gamma(a, 5), we get

@ x) oy m(x|On(6)
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So if the prior is any Gamma density then the posterior is also a Gamma density. This
proves conjugacy for the Gamma family.

(b) We may compute

(x| O)n(6)
m(@ | x)
2 . Gamma(6; o, B)

<

Gamma (9; a+2,6+ %)
o L0 exp(=0)

n(x) =

_ X3 I'(a)
G gar2-1 exp(—(8 + 1/x)0)
. T(a+2) B 1
T T B+ 1/x)etr K3
ala + 1)B

Br e

2. (a) Using the theory for undirected weighted graphs, the limiting distribution for the
states A, B, C is

(W1+W2+W4 w1 + w3 + ws W2+W3+W6)
w ’ w ’ w

where
W =2(w; + wy + w3) + Wy + ws + wg.
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(c) The idea would be to simulate a sample from the posterior for the vector of weights
(W1, ws, ..., wg), and then take the average of W over this sample. There are
many ways to generate such a sample. Below is a basic example:

post <- function(w) { w[1]28*w[2]A5*w[3]29*w[4]*2*w[5]*w[6]42/
(WL1]+w[2]+w[4]1)29/ (w[1]+w[5]+w[3])A9/ (w[2]+w[3]+w[6])A9*
exp(-sum(w))
}
N <- 10000
result <- rep(0®, N-1)
W <- wprop <- rep(l, 6)
for (i in 2:N) {
wprop <- abs(w + rnorm(6, 0, 0.1))
if (runif(l) < post(wprop)/post(w)) w <- wprop
result[i-1] <- (w[1l]+w[2]+w[4])/(sum(w)+w[1]+w[2]+w[3])
}

print (mean(result))

Many improvements could be made to the algorithm above to improve its accuracy.
For example, one should transform so that one simulated the variables u; = log(w;)
instead of the variables w;, and one should compute the logarithm of the posterior
density instead of the density itself. One should also remove burn-in.

The most important point is that the formula from (a), for the long-term probability
for state A, should be computed for the simulated vector of weights in each step, and
the average should be computed afterwards.

(d) The assumption that the Markov chain is represented as a random walk on a weighted
graph is equivalent to the assumption that the Markov chain is time reversible. In the
alternative model, no such assumption would be made. The difference between the
priors would make also make a difference, but this difference would diminish as the
amount of data increased. The remaining difference would be that the Markov chain
using the model of this task would be time-reversible, while in the alternative model
it would not.

3. (a) When p = 1 there are n communication classes, one for each state. When p < 1,
there is a single communication class.



(b)

(©)

(d)

(a)

When p = 1, the chain does not return to states i > 1, so these have period oo, while
state 1 has period 1. When 0 < p < 1 the states are all aperiodic. When p = 0 all
states have period n.

When p = 1 the chain is absorbed in the state 1, so the distribution (1,0,...,0) is a
stationary distribution, and there can be no other.

When p < 1 the chain is irreducible, so there exists a single stationary distribution. It
can be found as the probability vector v satisfying vP = v where

[p 1-p 0 0 ... O]
0 0 1 0 0
0 0 01 ... 0
P=|. ) .o -
0 0 0 0 1
1 0 00 0
We get
vip+v,=v;
vi(l = p)=wn
and
Vo) =V3 = - =V,

Together with v + v, + -+ - + v, = 1 this yields

1

yv=——({,1-p,...,1-p)
p+n-—pn

as the unique stationary distribution.

When p = 1 the chain is absorbed in the state 1 so the limiting distribution is clearly
(1,0,...,0). When 0 < p < 1 the Markov chain is irreducible and aperiodic, so it
has a unique limiting distribution that is identical to the stationary distribution found
above. When p = 0 the Markov chain is periodic, and thus does not have a limiting
distribution.

We need to find the smallest positive root of G(s) = s where G(s) = i + %s + ‘—l‘s3 18
the probability generating function. We get the equation

4s=1+25+5

or 1 -2s+s° = 0. Using that this equation has aroot s = 1 (as we know that G(1) = 1)
we can factorize
V5

s = smDrsmly = =[5+ 1) =3 = ooy [54 L4 B
1-2s+s5" = (s—1)(s"+s—1) = (s 1)((s+2) 4]—(s 1)[s+2+ 5 )(54-

Thus the smallest positive root, and the extinction probability, is ¢ = —
0.618034.



(b) Conditioning on the size of the first generation and using the value ¢ computed above,
we get

E [E [extinction | Z;]] = E [czl] = Z c'e
k=0

Pr [extinction]

=ty (Ck‘) = e let = exp(=0.381966.0).
k=0 '

(a) We can model the situation with a continuous time Markov chain with three states:
O (Adam has no customers), A (Adam has an adult customer), and C (Adam has a
child customer). The generating matrix becomes

-4 1 9
303
0-|f <4 o

I 0 -1

and the equation vQ = 0 yields the two equations v;/3 — v,/2 = 0 and v; — v3 = 0.
Together with the equation v; + v, + v3 = 1 we easily get the solution

313
V=1, 7 3
848

and the answer to the question is a quarter of the time.

(b) To make a Poisson subordination, we choose A = 4/3, which yields

4 1 1 3 1 3
1 -3 3 |1 -1 g 0 3 3
— _3 o _1 |3 _3 =3 2
R=-0+1= 3 5 O |+1= 0|+1 0f.
A 4 § 5 3 § 5
1 0 -1 i 0 —3 7 0 3

The graphs become

5/8




(c) As the transition rate graph is a tree, it automatically follows that the Markov process
is time reversible.

6. We have
E[N, -2t |N,,0<r < s]
= E[N;+N,—N;|N.,0<r<s]-2t
= E[N;|N,0<r<s]+E[N;,—N,] -2t
= N,+E[N,_]-2¢t
= N,+2(t—-s5)—2t
= N;—-2s
Further,
E[IN, =2t]] < E[|N/] + 2t = 2t + 2t < 0.
7. We have

X, ~B,|(Bi=a)~B,—tB; +tB;|(By =a) ~ B, —tB; +ta | (B] = a)

Now B, —tB, is a Brownian bridge, and according to Dobrow it is independent of the value
of By. Thus

Alterantively, one may observe that the processes X, and Y, are Gaussian processes so it is
enough to prove that they have the same expectation and covariance functions to prove that
they are identical. This can be done with direct computation, using similar computations
as those in Dobrow when proving the statement above for a = 0. We get

E[X;] =at =E[Y,]

and when s <t
Cov[X,,X/]=s5—st=Covl|Y,,Y,].



