
Tentamen

MVE505 Diskret Matematik TM1

2024-08-28 kl. 14.00–18.00

Examinator: Peter Hegarty, Matematiska vetenskaper, Chalmers

Telefonvakt: Peter Hegarty, telefon: 070-5705475

Hjälpmedel: Inga

För godkänt p̊a tentan krävs 45 poäng, inklusive eventuella bonuspoäng erh̊allna fr̊an inlämningsuppgifterna un-

der VT-2024. Preliminärt s̊a krävs 65 poäng för betyget 4 och 85 poäng för betyget 5. Dessa gränser kan minskas

men inte höjas i efterhand.

Lösningar läggs ut p̊a kursens Canvassida direkt efter tentan. Tentan rättas och bedöms anonymt. Resultatet

meddelas i Ladok senast den 20 september. Granskning ordnas därefter av kursansvarig.

OBS! Alla stegen i dina resonemang m̊aste motiveras väl i skrift och alla beräkningar visas. Det
är i huvudsak tillvägag̊angssätten och motiveringarna som ger poäng, inte svaren.

I de uppgifter som best̊ar av fler olika delar g̊ar det alltid att lösa de enskilda delarna oberoende
av varandra, även om man kan ibland spara räknetid genom att lösa deluppgifterna sekventiellt.

Om du i en lösning av n̊agon av uppgifterna 1-7 åberopar en sats fr̊an kurslitteraturen s̊a behöver
du inte inkludera ett bevis av satsen.

I Uppgift 1 behöver du inte ange svaren som explicita decimaltal.

Jag bifogar 3 exemplar av Figure 6 s̊a att ni har extra kladdpapper.

Var god vänd!



Uppgifterna

1. At the recent Olympics there were a total of 328 events.

(a) Suppose I told you the names of the 91 countries that each won at least one medal. (3p)
How many possibilities does this leave for the list of countries winning gold medals ?
(i.e.: we care about which country won gold in which event).

(b) Suppose instead I told you the names of the 91 countries that each won at least one (3p)
medal, plus I told you that 63 of them won at least one gold, but I didn’t tell you
which 63. How many possibilities does this leave for the list which gives the number
of gold medals per country ? (i.e.: we only care about how many golds each country
won, not in which events).

(c) Sweden won 4 golds, 4 silvers and 3 bronzes, and did not win more than one medal (3p)
in any event. How many possibilities does this leave for the choice of events in which
Sweden won medals, assuming we care about which value of medal was won in each
event ?

(d) Same question as in (b), but this time I tell you which 63 countries won gold and, (3p)
moreover, I tell you that no country won more than 150 golds (!!).

(e) There were 5 relay events in athletics1. Suppose these 5 golds were independently and (3p)
randomly given to one of USA, UK and Jamaica. What is the probability that USA
would end up with strictly more relay golds than UK ?

2. Compute an explicit formula for the numbers (an)
∞

n=0 which satisfy the recursion (12p)

a0 = 1, a1 = 1, an = 9an−1 − 8an−2 + 3 · 2n + 14n, ∀n ≥ 2.

3. Compute the general solution to the Diophantine equation (8p)

353x+ 77y = 100,

along with all solutions satisfying |x|+ |y| < 1000.

4. (a) Without doing any calculations, explain why at least one of the nmbers 16439, 16441 (3p)
and 16443 cannot be prime.

(b) Turns out 16443 ain’t prime. Determine the number of elements in the ring Z16443 (5p)
that have a multiplicative inverse.

5. Compute the general solution, plus the greatest negative solution, to the following system (8p)
of congruences:

3x ≡ 1 (mod 7), 5x ≡ 2 (mod 8), 6x ≡ 5 (mod 13).

14× 100 for men and women, 4× 400 for men and women, plus a 4× 400 mixed relay.



6. Let G be the network in Figure 6, let G∗ be the underlying undirected, but still weighted
graph and let G∗∗ be the underlying undirected and unweighted graph.

(a) Determine, with proof, χ(G∗∗) (Obs! You can appeal to theorems in the lecture notes (3p)
without proof).

(b) Add in as few edges to G∗∗ as possible so that the resulting graph or multigraph (you (4p)
are allowed to create multiple edges !) has an Euler trail. Then determine an explicit
Euler trail in the resulting (multi)graph.

(c) Starting from s, apply Prim’s algorithm to determine a minimal spanning tree in G∗. (4p)
Indicate clearly which edge is chosen at each step and draw the final tree.

(d) Implement the Ford-Fulkerson algorithm to determine a maximum flow from s to t in (7p)
the network G and a corresponding minumum cut. Write clearly which f -augmenting
path you choose at each step. Draw the final flow in full and indicate the corresponding
minimum cut.

7. Let G be a simple graph on n ≥ 1 nodes and suppose that deg(v) > n−2
2

for each v ∈ V (G). (7p)
Prove that G must be connected.

8. (a) Define the Catalan numbers Cn, where n is a non-negative integer. (2p)

(b) State and prove an explicit formula, in terms of binomial coefficients, for these num- (10p)
bers. (Obs! It’s up to you how you prove the formula.)

9. (a) Define clearly what is meant by a stable matching for a bipartite dataset (Obs! What (2p)
you write should clearly explain both terms).

(b) Describe the Gale-Shapley algorithm, and prove that it always produces a stable (10p)
matching for a bipartite dataset.

Go n’eiŕı an bóthar libh!
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1. (a) We have 91 choices for each gold medal and 328 gold medals, thus 91328 possibilities.

(b) First there are
(

91

63

)

choices for the countries that won gold(s). Having chosen these,
first give each country one gold. We then have 328 − 63 = 265 golds which can be
freely distributed amongst the 63 countries. This can be done in

(

265+63−1

63−1

)

=
(

327

62

)

ways.

Hence, by MP, the total number of possibilities is
(

91

63

)

×
(

327

62

)

.

(c) This is equivalent to the number of possibilities for a 328-letter word consisting of 4
G’s, 4 S’s, 3 B’s and 317 N’s (N = nothing). By Theorem 2.6, the number of such
words is 328!

4! 4! 3! 317!
.

(d) If I tell you which 63 countries won gold then, by the same reasoning as in (b), this
leaves

(

327

62

)

possibilities, if no further restrictions are placed. Let Ω be this set of
options. We seek |Ω\X|, where X is the set of options where some country wins 151
or more golds. List the 63 countries in any order and let Xi be the set of options
in which country i wins at least 151 golds. Note that the intersection of any two
Xi will be empty, since 151 · 2 > 265. Thus, |X| =

∑

|Xi| = 63|X1|. To compute
|X1|, first give 151 golds to country nr. 1 and 1 gold to every other country. We then
have 328 − 151 − 62 = 115 golds which can be distributed freely amongst the 63
countries,and thus |X1| =

(

115+63−1

63−1

)

=
(

177

62

)

.

Answer:
(

327

62

)

− 63 ·
(

177

62

)

.

(e) Let Ω be the set of all possible outcomes. |Ω| = 35, since there are 3 options for each
of the 5 golds. Let A be the event that USA wins more golds than UK, let B be
the reverse event and let C be the event that they win the same number of golds.
Then A, B and C are mutually exclusive and together cover Ω. We seek P(A) and,
by symmetry, P(A) = P(B). Thus,

P(A) =
1

2
(1− P(C)). (1)

Further, we have P(C) = N/35, where N is the number of outcomes in which USA
and UK win the same number of golds. This number can be 0, 1 or 2 and hence

N = N0 +N1 +N2 = 1 +

(

2

1

)(

5

3

)

+

(

4

2

)(

5

1

)

= 1 + 20 + 30 = 51.

Substituting into (1), we get

P(A) =
1

2

(

1−
51

243

)

=
32

81
.

2. Step 1: The characteristic equation is x2 = 9x − 8, which has the roots x1 = 1, x2 = 8.
Hence the general solution of the homogeneous equation is

ah, n = C1 + C2 · 8
n.

Step 2: Since 1 is a root of multiplicity one of the characteristic equation, whereas 2 is not
a root at all, our choice of a particular solution should look like

ap, n = ap1, n + ap2, n,



where
ap1, n = C3 · 2

n, ap2, n = n(C4n+ C5) = C4n
2 + C5n.

Inserting into the recurrence gives, firstly,

C3 · 2
n = 9C3 · 2

n−1 − 8C3 · 2
n−2 + 3 · 2n.

Cancelling 2n−2 gives
4C3 = 18C3 − 8C3 + 12 ⇒ C3 = −2.

Secondly,

C4n
2 + C5n = 9[C4(n− 1)2 + C5(n− 1)]− 8[C4(n− 2)2 + C5(n− 2)] + 14n.

The coefficients of n2 will cancel exactly. Equating coefficients of n yields

C5 = 9(−2C4 + C5)− 8(−4C4 + C5) + 14 ⇒ · · · ⇒ C4 = −1.

Finally, equating constant coefficients yields

0 = 9(C4 − C5)− 8(4C4 − 2C5)
C4=−1
⇒ C5 = −

23

7
.

Step 3: Hence, the general solution of the recurrence is

an = ah, n + ap1, n + ap2, n = C1 + C2 · 8
n − 2n+1 − n2 −

23n

7
.

Insert the initial conditions:

n = 0 : a0 = 1 = C1 + C2 − 2 ⇒ C1 + C2 = 3,

n = 1 : a1 = 1 = C1 + 8C2 − 4− 1−
23

7
⇒ C1 + 8C2 =

65

7
.

We solve easily to get C1 = 103/49, C2 = 44/49. Hence,

an =
103

49
+

44

49
· 8n − 2n+1 − n2 −

23n

7
.

3. First run Euclid’s algorithm forwards to find GCD(353, 77):

353 = 4 · 77 + 45,

77 = 1 · 45 + 32,

45 = 1 · 32 + 13,

32 = 2 · 13 + 6,

13 = 2 · 6 + 1.

So GCD(353, 77) = 1, which means the Diophantine equation has a solution, since the
right-hand side is a multiple of 1. The general solution has the form

x = mx0 −

(

b

d

)

n, y = my0 +
(a

d

)

n, n ∈ Z. (2)



Here a = 353, b = 77, d = 1 and m = c/d = 100. To find (x0, y0), we run backwards
through Euclid:

1 = 13− 2 · 6

= 13− 2(32− 2 · 13)

= 5 · 13− 2 · 32

= 5(45− 32)− 2 · 32

= 5 · 45− 7 · 32

= 5 · 45− 7(77− 45)

= −7 · 77 + 12 · 45

= −7 · 77 + 12(353− 4 · 77)

⇒ 1 = 12 · 353− 55 · 77.

Thus x0 = 12, y0 = −55. Inserting into (2) gives

x = 1200− 77n, y = −5500 + 353n, n ∈ Z.

It is then easy to check that there are 4 solutions satisfying |x| + |y| < 1000. These
correspond to n = 14, 15, 16, 17 and are, respectively,

(122, −558), (45, −205), (−32, 148), (−109, 501).

4. (a) Any three consecutive odd numbers are mutually incongruent modulo 3, hence one
of them must be a multiple of 3.

(b) We seek φ(16443). First we factorize. Using the digit-sum trick, we get

16443 = 3 · 5481 = 32 · 1827 = 33 · 609 = 34 · 203 = 34 · 7 · 29.

Hence,

φ(16443) = φ(34) · φ(7) · φ(29) = (34 − 33)(7− 1)(29− 1) = 54 · 6 · 28 = 9072.

5. First some editing:

3x ≡ 1 (mod 7) ⇒ x ≡ 3−1 · 1 ≡ (−2) · 1 ≡ −2 (mod 7),

5x ≡ 2 (mod 8) ⇒ x ≡ 5−1 · 2 ≡ 5 · 2 ≡ 10 ≡ 2 (mod 8),

6x ≡ 5 (mod 13) ⇒ x ≡ 6−1 · 5 ≡ (−2) · 5 ≡ −10 ≡ 3 (mod 13).

Thus, by eq. (11.3) in the lecture notes, the general solution is

x ≡ −2 · b1 · 8 · 13 + 2 · b2 · 7 · 13 + 3 · b3 · 7 · 8 (mod 7 · 8 · 13), (3)

where

b1 ≡ (8 · 13)−1 ≡ (1 · (−1))−1 ≡ (−1)−1 ≡ −1 (mod 7),

b2 ≡ (7 · 13)−1 ≡ ((−1) · (−3))−1 ≡ 3−1 ≡ 3 (mod 8),

b3 ≡ (7 · 8)−1 ≡ 56−1 ≡ 4−1 ≡ −3 (mod 13).



We thus choose b1 = −1, b2 = 3, b3 = −3 and insert into (3) to get

x ≡ (−2) · (−1) · 8 · 13 + 2 · 3 · 7 · 13 + 3 · (−3) · 7 · 8

≡ 208 + 546− 504 ≡ 250 (mod 728).

So the general solution is x ≡ 250 (mod 728). We do a sanity check:

250− (−2) = 252 = 7 · 36, ok

250− 2 = 248 = 8 · 31, ok

250− 3 = 247 = 13 · 19, ok !
Finally, the greatest negative solution is x = 250− 728 = −478.

6. (a) Perhaps the most natural thing to try first is a greedy coloring, starting with s, then
in alphabetical order, and ending with t. If so, we’ll use color 2 at a and need color
4 at f . But if we switch to color 3 at a, then we can use color 2 at f and continue
using only 3 colors in all:

Color 1: s, d, g, h, t.

Color 2: b, f, i.

Color 3: a, c, e, j.
Hence χ(G∗∗) ≤ 3. But G∗∗ contains many triangles, hence χ(G∗∗) = 3.

(b) There are 6 nodes of odd degree: s, a, b, e, g, t. I thus need to add 2 edges in order
to reduce this number to two. For example, let’s add another {s, b} edge and another
{e, g} edge. Then only a and t have odd degree, so there must be an Euler trail
between them. An example of such a trail is as follows:

a → s → b → s → c → b → d → a → f → d → e → f → t

→ i → e → b → g → c → h → j → g → e → g → i → j → t.

(c) The algorithm could proceed as follows (there are other possibilities, for example the
edge {a, f} could be chosen at Step 2):

Step Edge chosen Weight

1 {s, a} 9

2 {a, d} 4

3 {d, b} 3

4 {d, e} 3

5 {e, g} 3

6 {b, c} 4

7 {e, f} 4

8 {e, i} 4

9 {i, j} 1

10 {c, h} 5

11 {j, t} 8

Total weight 48

The final tree is illustrated in Figure L.6(c).



Step f -augmenting path Increase in flow strength

1 s → a → f → t 4

2 s → a → d → f → t 4

3 s → b → g → i → t 8

4 s → c → h → j → t 5

5 s → c → g → j → t 3

6 s → c → g → j → i → t 1

7 s → b → e → f → t 2

Total flow strength 27

(d) The algorithm could proceed as above (there are other alternatives).
The final flow is illustrated in Figure L.6(d). The set of nodes that can now be reached
from s via an augmenting path is S = {s, a}. Sätt T = V \S = {b, c, d, e, f, g, h, i, j t}.
Then we have

c(S, T ) = c(a, d) + c(a, f) + c(s, b) + c(s, c) = 4 + 4 + 10 + 9 = 27 = |f |.

7. Let x and y be two nodes in G. It suffices to show there must be a path in G between x
and y. If there is an edge between them, we are done. Otherwise, there are n− 2 nodes in
G, other than x and y, and every neighbor of either one is amongst those n− 2 nodes. But
since each has degree greater than n−2

2
, it must be the case (by the Pigeonhole Principle)

that they have at least one common neighbor, say z. Then there is a path of length 2
between them, via z.

8. (a) Definitions 5.7, 5.8 and 5.9 in the lecture notes.

(b) Theorem 5.10 in the lecture notes. Either of the two proofs given in the notes is
acceptable.

9. (a) Dataset 21.2 and Definition 21.2 in the lecture notes.

(b) Theorem 21.3 in the lecture notes.


