
EXAM

MVE166/MMG631

Linear and integer optimization with applications

• Date: 2025-06-05

– Hours: 08:30–12:30

• Aids: Text memory-less calculator; English-Swedish dictionary; pens; paper; ruler

• Number of questions: 5

– questions are not ordered by di�culty

• Requirements
– To pass the exam the student must receive at least seven (7) out of �fteen

(15) points (not including bonus points) and at least two (2) passed questions

– To pass a question requires at least two (2) points out of three (3) points

– For higher grades (i.e., 4, 5, or VG) at most two (2) bonus points can be

counted towards the grade

– Bonus points (from assignments) are valid for the three �rst exam

occasions, counted from the course round when they were gained (i.e., the

ordinary exam and the two following re-exam occasions)

• Examiner: Ann-Brith Strömberg

– Phone: 0705-273645

General instructions for the exam
When answering the questions

• use generally valid theory and methodology. All theoretical results and properties

used for the solutions should be properly referred to, either from the course literature

or from other scienti�c references, such as scienti�c textbooks and scienti�c journal

articles;

• state your methodology carefully;

• when reporting numerical calculations, clearly write down a reasonable number of

steps so that your understanding can be judged;

• do not use a red pen;

• do not answer more than one question per sheet.
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Question 1
ILP modeling

[3p]

A logistics company is expanding its operations and is considering opening new warehouses

to improve service levels across the region. The company has identi�ed seven candidate cities

for potential warehouse locations: Aldora, Bexhill, Crestville, Dunwick, Elbridge, Fairmere, and
Glenrock.

For each city i ∈ {Aldora,Bexhill,Crestville,Dunwick,Elbridge, Fairmere,Glenrock} there is a

�xed cost, ai for opening a warehouse, a salary cost, si per employee/work day, and a maximum

number, ui of employees it can accommodate. Due to budget limitations, the company may

open at most �ve warehouses.

The company must also serve ten customer zones z1, … , z10, each with a speci�ed, estimated

daily demand of dj packages to be delivered. Each customer zone must be assigned to exactly

one open warehouse.

The required number of employees at each warehouse depends on the total daily demand it

handles, based on the rule that one (1) employee is needed per 100 packages/work day. It is

assumed that employees can only be permanently employed and for full work days.

The transportation costs per package from candidate city i to customer zone zj is cij .

The company wishes to minimize its daily costs for meeting the estimated demand of package

deliveries.

Formulate an Integer Linear Program (ILP) that determines:

• Which cities should host warehouses?

• How many employees should be hired at each of the open warehouses?

• Which customer zones should be assigned to each warehouse?

You should not solve the problem.
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Question 2
The simplex algorithm

Consider the linear optimization problem to

maximize z = x2 + x3,
subject to x1 + 2x2 + 2x3 ≤ 7,

2x1 + x2 + x3 ≤ 6,
x3 ≥ 2,

x1, x2, x3 ≥ 0.

(a) [1p]

Reformulate this problem such that it can be solved using the simplex method.

(b) [1.5p]

Solve the problem using the simplex method, including all necessary steps.

(c) [0.5p]

State all optimal bases as well as all optimal points.

Question 3
Convexity of the feasible set of a linear optimization problem

[3p]

Consider a linear optimization problem, stated as

minimize z =
n

∑
j=1

cjxj ,

subject to

n

∑
j=1

aijxj ≤ bi , i = 1, … ,m,

xj ≥ 0, j = 1, … , n.

Theorem 4.1 in the course book expresses that the feasible set of this problem is a convex set.

State and prove this theorem.
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Question 4
Cutting planes

Consider the ILP to

minimize −2x1 − x2, (1a)

subject to 6x1 + 2x2 ≤ 19, (1b)

x1 + 5x2 ≤ 20, (1c)

x1, x2 ∈ ℤ+. (1d)

(a) [1p]

State a cutting plane that can be introduced due to the property of the inequality (1b).

(b) [2p]

Assume that the simplex method �nds the following optimal tableau for the LP-relaxation

of the ILP, where the improved inequality from sub-question (a) is used:

xB z x1 x2 s1 s2 B−1b
z 1 0 0 −9/14 −1/14 −7 3

14 = −101/14
x1 0 1 0 5/14 −1/14 1 11

14 = 25/14
x2 0 0 1 −1/14 3/14 3 9

14 = 51/14

State all Gomory cuts that can be derived from the constraints in this tableau.
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Question 5
Shortest paths and sensitivity analysis

Consider the following network of four nodes and �ve directed arcs with lengths cij , where

(i, j) denotes the arc from node i to node j:
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(a) [1p]

Solve the problem of �nding a shortest path from node 1 to node 4 in this graph. Use a

suitable method from the course, and motivate why this method is suitable for the data

in this speci�c instance. Report your calculations clearly.

(b) [1p]

The problem of �nding the shortest paths from one node to all other nodes in a directed

graph can be formulated as a linear optimization problem. For the speci�c graph above

the problem of �nding the shortest paths from node 1 to each of nodes 2, 3, and 4 is

formulated as to

minimize z = 2x12 + 3x13 + 2x23 + 7x24 + 5x34, (2a)

subject to − x12 − x13 = −3, (2b)

+ x12 − x23 − x24 = 1, (2c)

+ x13 + x23 − x34 = 1, (2d)

+ x24 + x34 = 1, (2e)

x12, x13, x23, x24, x34 ≥ 0. (2f)

The optimal solution to (2) is given by x12 = 1, x13 = 2, x23 = 0, x24 = 0, x34 = 1.

State the corresponding optimal basis to the problem (2a)–(2d), (2f). State also the three

shortest paths, in terms of the arcs included in each path.

Note that the equations (2b)–(2e) are linearly dependent. Therefore, one of these constraints,
e.g., (2e), must be removed before a basis can be determined.

(c) [1p]

Assume that the arc length c13 = 3 is replaced by c13 = 3 + �13 and that the arc length

c23 = 2 is replaced by c23 = 2 + �23, where �13, �23 ∈ ℝ.

The current solution to the problem (2a)–(2d), (2f) (i.e., the optimal solution given in

sub-question (b) above) is optimal when the reduced costs of all non-basic variables are

non-negative, i.e., when the inequality c⊤N − c⊤BB−1N ≥ 0⊤ holds. Utilize this inequality to

determine for which values of (�13, �23) ∈ ℝ2
the current solution is optimal.
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Solution proposals to EXAM 2025-06-05
MVE166/MMG631 Linear and integer optimization with applications

These solutions may be brief in relation to the requirements on your answers, in particular

regarding motivations.

Solutions to Question 1
Decision Variables

• xi ∈ {0, 1}: 1 if a warehouse is opened in city i, 0 otherwise

• yij ∈ {0, 1}: 1 if customer zone j is assigned to warehouse i, 0 otherwise

• ei ∈ ℤ≥0: Number of employees hired in warehouse i

ILP: min
7

∑
i=1

siei +
7

∑
i=1

10

∑
j=1

cijdjyij

subject to

7

∑
i=1

xi ≤ 5 (At most 5 warehouses)

7

∑
i=1

yij = 1 ∀j ∈ {1, … , 10} (Each zone assigned to one warehouse)

yij ≤ xi ∀i, j (Zones assigned only to open warehouses)

1
100

10

∑
j=1

djyij ≤ ei ∀i (Su�cient # employees per warehouse)

ei ≤ uixi ∀i (Maximum # employees per warehouse)

xi , yij , ei ∈ ℤ+ ∀i, j

Solutions to Question 2
(a) Add slack variables to express the model on standard form:

maximize z = x2 + x3,
subject to x1 + 2x2 + 2x3 + s1 = 7,

2x1 + x2 + x3 + s2 = 6,
x3 − s3 = 2,

x1, x2, x3, s1, s2, s3 ≥ 0.

Since the column for s3 is a negative unit column, an arti�cial variable and the two-phase

method is required to solve the problem. The phase-I problem is stated as to

minimize w = a,
subject to x1 + 2x2 + 2x3 + s1 = 7,

2x1 + x2 + x3 + s2 = 6,
x3 − s3 + a = 2,

x1, x2, x3, s1, s2, s3, a ≥ 0.
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(b) Express the phase-I objective as a function of the non-basic variables: w = a = 2 − x3 + s3.
Simplex iterations (minimization):

xB w x1 x2 x3 s1 s2 s3 a B−1b
w 1 0 0 1 0 0 −1 0 2 Entering variable: x3 (red. cost: −1)

s1 0 1 2 2 1 0 0 0 7 Ratio: 7/2 > 2/1
s2 0 2 1 1 0 1 0 0 6 Ratio: 6/1 > 2/1
a 0 0 0 1 0 0 −1 1 2 Ratio: 2/1. Leaving variable: a
w 1 0 0 0 0 0 0 −1 0 All reduced costs ≥ 0
s1 0 1 2 0 1 0 2 −2 3 ⟹ optimum of phase-I

s2 0 2 1 0 0 1 1 −1 4 ⟹ feasible basis ⟹ phase-II

x3 0 0 0 1 0 0 −1 1 2

Express the phase-II objective as a function of the non-basic variables:

z = x2 + x3 = x2 + (2 + s3). Simplex iterations (maximization):

xB z x1 x2 x3 s1 s2 s3 B−1b
z 1 0 −1 0 0 0 −1 2 Entering variable: x2 (red. cost: 1)

s1 0 1 2 0 1 0 2 3 Ratio: 3/2. Leaving variable: s1
s2 0 2 1 0 0 1 1 4 Ratio: 4/1 > 3/2
x3 0 0 0 1 0 0 −1 2 Ratio: denominator: 0

z 1 1/2 0 0 1/2 0 0 7/2 All reduced costs ≤ 0
x2 0 1/2 1 0 1/2 0 1 3/2 ⟹ optimum phase-II

s2 0 3/2 0 0 −1/2 1 0 5/2
x3 0 0 0 1 0 0 −1 2

The problem is solved to optimality. Optimal solution: x1 = 0, x2 = 3/2, x3 = 2, z = 7/2.

(c) Not all reduced costs of non-basic variables are negative. The reduced cost of s3 equals 0.

Continue the simplex iterations.

xB z x1 x2 x3 s1 s2 s3 B−1b
z 1 1/2 0 0 1/2 0 0 7/2 Entering variable: s3 (red. cost: 0)

x2 0 1/2 1 0 1/2 0 1 3/2 Ratio: (3/2)/1
s2 0 3/2 0 0 −1/2 1 0 5/2 Ratio: denominator: 0
x3 0 0 0 1 0 0 −1 2 Ratio: denominator: < 0
z 1 1/2 0 0 1/2 0 0 7/2 All reduced costs ≤ 0
s3 0 1/2 1 0 1/2 0 1 3/2 ⟹ optimum phase-II

s2 0 3/2 0 0 −1/2 1 0 5/2
x3 0 1/2 1 1 1/2 0 0 7/2

The next iteration will lead to the previous basis, hence all optimal bases are found. Op-

timal bases: (x2, s2, x3) = (3/2, 5/2, 2) (with x1 = s1 = s3 = 0) and (s3, s2, x3) = (3/2, 5/2, 7/2)
(with x1 = x2 = s1 = 0).

All optimal points in the (x1, x2, x3) space are given by the convex hull of (x1, x2, x3) =
(0, 3/2, 2) and (x1, x2, x3) = (0, 0, 7/2). The set of optimal solutions is thus expressed as

X ∗ = {�(0, 3/2, 2) + (1 − �)(0, 0, 7/2) ∶ � ∈ [0, 1]} = {(0, 3�/2, (7 − 3�)/2) ∶ � ∈ [0, 1]}.

Solutions to Question 3
See the course book, Theorem 4.1 and its proof.
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Solutions to Question 4
(a) Since all coe�cients in the LHS of (1b) are even numbers, all coe�cients in the inequality

can be divided by 2 ⟹ 3x1 + 1x2 ≤ 9.5 ⟹ the cutting plane 3x1 + 1x2 ≤ 9

(b) The optimal tableau:

xB z x1 x2 s1 s2 B−1b
z 1 0 0 −9/14 −1/14 −7 3

14 = −101/14
x1 0 1 0 5/14 −1/14 1 11

14 = 25/14
x2 0 0 1 −1/14 3/14 3 9

14 = 51/14

Gomory cut from the x1-row: x1 + 5
14s1 −

1
14s2 = 1 11

14 ⟺x1 − s2 − 1 = 11
14 −

5
14s1 −

13
14s2.

As the LHS is integer for all feasible solutions and the RHS ≤ 11
14 , the RHS must be ≤ 0.

Hence the inequality x1 − s2 − 1 ≤ 0 must hold.

Substituting for s2 = 20 − x1 − 5x2 yields the inequality x1 − (20 − x1 − 5x2) − 1 ≤ 0 ⟺
(1 + 1)x1 + (5)x2 ≤ (0 + 20 + 1)⟺ 2x1 + 5x2 ≤ 21

Gomory cut from the x2-row: x2 − 1
14s1 +

3
14s2 = 3 9

14 ⟺x2 − s1 − 3 = 9
14 −

13
14s1 −

3
14s2.

As the LHS is integer for all feasible solutions and the RHS ≤ 9
14 , the RHS must be ≤ 0.

Hence the inequality x2 − s1 − 3 ≤ 0 must hold.

Substituting for s1 = 9 − 3x1 − x2 yields the inequality x2 − (9 − 3x1 − x2) − 3 ≤ 0 ⟺
(3)x1 + (1 + 1)x2 ≤ (0 + 9 + 3)⟺ 3x1 + 2x2 ≤ 12

Solutions to Question 5
(a) Use Dijkstra’s algorithm. ... calculations should be reported here ... Optimal path:

1 → 3 → 4

(b) Optimal basis: xB = (x12, x13, x34).
The three optimal paths are given by 1 → 2, 1 → 3, and 1 → 3 → 4.

(c) For the optimal basis, given by xB = (x12, x13, x34) and xN = (x23, x24), the following

relations hold:

c⊤N = (c23 c24) = (2 + �23 7), c⊤B = (c12 c13 c34) = (2 3 + �13 5), B =
⎛
⎜
⎜
⎝

−1 −1 0
1 0 0
0 1 −1

⎞
⎟
⎟
⎠
,

B−1 =
⎛
⎜
⎜
⎝

0 1 0
−1 −1 0
−1 −1 −1

⎞
⎟
⎟
⎠
, and N =

⎛
⎜
⎜
⎝

0 0
−1 −1
1 0

⎞
⎟
⎟
⎠
.

Derivation of the reduced costs:

c⊤N − c⊤BB−1N = (2 + �23 7) − (2 3 + �13 5)
⎛
⎜
⎜
⎝

0 1 0
−1 −1 0
−1 −1 −1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

0 0
−1 −1
1 0

⎞
⎟
⎟
⎠
= …

= (1 + �23 − �13 1 − �13) ≥ (0 0).

The current optimal solution, given by x12 = 1, x13 = 2, x23 = 0, x24 = 0, and x34 = 1, is

optimal for any (�13, �23) ∈ ℝ2
such that the inequalities �13 ≤ 1 and �13 − �23 ≤ 1 hold.
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