
EXAM

MVE166/MVE165/MMG631

Linear and integer optimization with applications

• Date: 2025-01-07

– Hours: 08:30–12:30

• Aids: Text memory-less calculator; English-Swedish dictionary; pens; paper; ruler

• Number of questions: 5

– questions are not ordered by di�culty

• Requirements
– To pass the exam the student must receive at least seven (7) out of �fteen

(15) points (not including bonus points) and at least two (2) passed questions

– To pass a question requires at least two (2) points out of three (3) points

– For higher grades (i.e., 4, 5, or VG) at most two (2) bonus points can be

counted towards the grade

– Bonus points (from assignments) are valid for the three �rst exam

occasions, counted from the course round when they were gained (i.e., the

ordinary exam and the two following re-exam occasions)

• Examiner: Ann-Brith Strömberg

– Phone: 0705-273645

General instructions for the exam
When answering the questions

• use generally valid theory and methodology. All theoretical results and properties

used for the solutions should be properly referred to, either from the course literature

or from other scienti�c references, such as scienti�c textbooks and scienti�c journal

articles;

• state your methodology carefully;

• when reporting numerical calculations, clearly write down a reasonable number of

steps so that your understanding can be judged;

• do not use a red pen;

• do not answer more than one question per sheet.
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Question 1
[3p]

Modeling using integer linear optimization

The problem of �nding a shortest (in terms of minimum cost) path from node s to node t in a

directed graph G = (N , A, d), where N denotes the set of nodes, s, t ∈ N , A denotes the set of

directed arcs, d = [dij](i,j)∈A, and dij > 0 denotes the length (cost) of the directed arc (i, j) ∈ A,

can be modeled as to

minimize ∑
(i,j)∈A

dijxij ,

subject to ∑
i∶(i,k)∈A

xik − ∑
j∶(k,j)∈A

xkj =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−1, k = s,
1, k = t,
0, k ∈ N ⧵ {s, t},

xij ≥ 0, (i, j) ∈ A,

where the value of the variable xij represents the number of times that the directed arc (i, j) ∈ A
is to be traversed in the path found.

Consider an extension of the shortest path problem such that each node visit generates a pro�t.

Speci�cally, assume that each node i ∈ N ⧵ {s, t} that is visited along a path generates a pro�t

qi > 0. Assume also that each node may be visited at most once.

Extend the model above such that also "node visiting pro�ts" are accounted for in the objective

function.

De�ne carefully all variables introduced. Moreover, all functions involved in the model must

be linear.
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Question 2
The simplex algorithm, feasibility, and optimality

Consider the linear optimization problem to

maximize 2x1 + 3x2 − 3x3, (1a)

subject to x1 + 2x2 + x3 ≤ 8 (1b)

2x1 + x2 − x3 ≥ 3 (1c)

x1, x2, x3 ≥ 0. (1d)

(a) [1p]

Reformulate the problem (1) such that it can be solved using the 2-phase simplex method.

(b) [1p]

Solve the reformulated problem from (a) using the simplex method, phase 1 and phase 2.

(c) [1p]

Verify that the solution found in (b) is optimal to (1), by using linear optimization duality

and complementarity relations.

Question 3
Shadow prices

Consider the linear optimization problem

z∗ ∶= max 2x1 + 3x2, (2a)

s.t. x1 + x2 ≤ 5, (2b)

2x1 + 5x2 ≤ 20, (2c)

x1, x2 ≥ 0. (2d)

(a) [1p]

Compute the shadow price for each of the two inequality constraints (2b) and (2c).

(b) [2p]

Utilize the shadow prices computed in (a) to predict the optimal value of (2) for the case

when the right–hand–sides are altered from (
5
20) to (

5
20) + (

−1
1 ) = (

4
21). Then,

show whether or not the computed shadow prices are valid for this particular change of

the values of the right–hand–sides.
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Question 4
[3p]

Optimal basic solutions

For a general primal–dual pair of linear optimization problems given by

(P) z∗ ∶= max { c⊤BxB + c⊤NxN ∶ BxB + NxN = b; xB, xN ≥ 000 }
(D) w∗ ∶= min { b⊤y ∶ B⊤y ≥ cB; N⊤y ≥ cN ; y free },

Theorem 6.4 states that if xB = B−1b, xN = 000 is an optimal basic solution to (P) then y⊤ = c⊤BB−1

is optimal in (D) and it holds that z∗ = w∗
.

Prove this theorem.

Question 5
Finding multiple optimal solutions

Consider the following binary linear optimization problem:

maximize 5x1 + 3x2 + 3x3 + x4, (3a)

subject to 7x1 + 5x2 + 6x3 + 3x4 ≤ 14 (3b)

x1, x2, x3, x4 ∈ {0, 1}. (3c)

(a) [1.5p]

Solve the problem (3) using the branch–and–bound algorithm, where the relaxation is

de�ned by relaxing the integrality constraints on the variables. Use breadth–�rst search

and search the 0-branch �rst. Terminate the algorithm when an optimal solution is

veri�ed. State the optimal solution and motivate why it is optimal in (3).

(b) [1.5p]

Here, you should describe how to investigate whether an optimal solution found is a

unique optimal solution to the binary linear optimization problem (3). This can be done

by adding one or several linear constraints to the model.

Given an optimal solution to the problem (3)—e.g., the solution found in (a)—formulate a

linear constraint such that the properties of an optimal solution to the resulting problem,

in which this new constraint is added to (3), yields information about whether or not

the solution from (a) is a unique optimal solution to (3).

Explain your reasoning carefully.

You do not have to solve the resulting problem.
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Solution proposals to EXAM 2025-01-07
MVE166/MVE165/MMG631 Linear and integer optimization with applications

These solutions may be brief in relation to the requirements on your answers, in particular

regarding motivations.

Solutions to Question 1
Let uk = 1 if node k is visited, otherwise uk = 0, k ∈ N ⧵ {s, t}.

minimize ∑
(i,j)∈A

dijxij − ∑
i∈N ⧵{s,t}

qiui ,

subject to ∑
i∶(i,k)∈A

xik − ∑
j∶(k,j)∈A

xkj =

⎧⎪⎪⎪
⎨⎪⎪⎪⎩

−1, k = s,
1, k = t,
0, k ∈ N ⧵ {s, t},

∑
i∶(i,k)∈A

xik = uk , k ∈ N ⧵ {s, t}

xij ≥ 0, (i, j) ∈ A,
uk ∈ {0, 1}, k ∈ N ⧵ {s, t}

Solutions to Question 2
(a) Add slack- and surplus variables, s1 and s2, and an arti�cial variable, a, and replace the

objective by the phase 1 objective to minimize a:

minimize a,
subject to x1 + 2x2 + x3 + s1 = 8

2x1 + x2 − x3 − s2 + a = 3
x1, x2, x3, s1, s2, a ≥ 0.

Solve this problem. At an optimal basis, if a = 0 then remove the variable a, reinstate

the original objective, and solve from the basis that was found as optimal in the phase 1

problem. If a > 0 at optimum of phase 1, then the problem (1) has no feasible solution.

(b) Solution of the phase 1 problem, with the objective to minimize w = a: An initial basis is

B = (s1, a) with B = (
1 0
0 1) = B−1

, cB = (0, 1), N = (x1, x2, x3, s2), N = (
1 2 1 0
2 1 −1 −1),

cN = (0, 0, 0, 0), and the reduced costs c̄⊤N = c⊤N − c⊤BB−1N = (−2, −1, 1, 1).
xB w x1 x2 x3 s1 s2 a B−1b
w 1 2 1 -1 0 -1 0 3

s1 0 1 2 1 1 0 0 8

a 0 2 1 -1 0 -1 1 3

w 1 0 0 0 0 0 -1 0

s1 0 0 3/2 3/2 1 1/2 -1/2 13/2

x1 0 1 1/2 -1/2 0 -1/2 1/2 3/2
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The solution x = (3/2, 0, 0)⊤ is feasible in (1). The corresponding values of the slack,

surplus, and arti�cial variables are s1 = 13/2, s2 = 0, and a = 0, respectively.

Solution of the phase 2 problem, with the objective to minimize z = 2x1 + 3x2 − 3x3: An

initial basis is is given by B = (s1, x1) with B = (
1 1
0 2), B−1 = 1

2 (
2 −1
0 1 ), cB = (0, 2),

N = (x2, x3, s2), N = (
2 1 0
1 −1 −1), cN = (3, −3, 0), and the reduced costs c̄⊤N = c⊤N −

c⊤BB−1N = (2, −2, 1).
xB z x1 x2 x3 s1 s2 B−1b
z 1 0 -2 2 0 -1 3

s1 0 0 3/2 3/2 1 1/2 13/2

x1 0 1 1/2 -1/2 0 -1/2 3/2

z 1 4 0 0 0 -3 9

s1 0 -3 0 3 1 2 2

x2 0 2 1 -1 0 -1 3

z 1 -1/2 0 9/2 3/2 0 12

s2 0 -3/2 0 3/2 1/2 1 1

x2 0 1/2 1 1/2 1/2 0 4

z 1 0 1 5 2 0 16

s2 0 0 3 3 2 1 13

x1 0 1 2 1 1 0 8

The solution x = (8, 0, 0)⊤ is optimal in (1). The optimal values of the slack and surplus

variables are s1 = 0 and s2 = 13, respectively.

(c) The LP dual of (1) is given by

minimize 8y1 + 3y2,
subject to y1 + 2y2 ≥ 2,

2y1 + y2 ≥ 3,
y1 − y2 ≥ −3,
y1 ≥ 0,

y2 ≤ 0.
Complementarity: For any x̂ and ŷ that are feasible in the primal and dual problems,

respectively, x̂ and ŷ are optimal in their respective problems if and only if the two

equalities

2
∑
i=1

ŷi(bi − Aix̂) = 0 and

3
∑
j=1

x̂j(cj − A⊤
j ŷ) = 0 hold.

For x̂ = (8, 0, 0)⊤ it holds that b−Ax̂ = (
8
−3)−(

1 2 1
−2 −1 1)

⎛
⎜
⎜
⎝

8
0
0

⎞
⎟
⎟
⎠
= (

8 − 8
−3 + 2 ⋅ 8) = (

0
13),

such that ŷ1 ⋅ 0 + ŷ2 ⋅ 13 = 0⟹ ŷ2 = 0.

Since x̂1 = 8 > 0 and x̂2 = x̂3 = 0, it must hold that x̂1(c1 − A⊤
1 ŷ) = 8(2 − ŷ1 + 2ŷ2) = 0⟹

ŷ1 − 2ŷ2 = 2. Since ŷ2 = 0 it follows that ŷ1 = 2.

By strong duality, the equality c⊤x̂ = b⊤ŷ should hold.

Check: c⊤x̂ = 2 ⋅ 8 + 3 ⋅ 0 − 3 ⋅ 0 = 16 and b⊤ŷ = 8 ⋅ 2 − 3 ⋅ 0 = 16.
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Solutions to Question 3

(a) Solving the primal problem graphically gives the optimal solution x∗ = 1
3 (

5
10)

with the optimal basis (x1, x2)⊤, cB = (
2
3), B = (

1 1
2 5), and B−1 = 1

3 (
5 −1
−2 1 ).

Shadow price = Optimal dual solution: y⊤ = c⊤BB−1 = 1
3 (2 3)(

5 −1
−2 1 ) = 1

3 (4 1)

(b) Alter the RHSs of the inequality constraints to bnew = (
4
21). A reasonable prediction

of the optimal value, given this new RHS is given by c⊤BB−1bnew = 1
3 (4 1)(

4
21) =

1
3 (4 ⋅ 4 + 1 ⋅ 21) = 37

3 .

The shadow prices are valid for all RHS such that xB = B−1b ≥ 000. For bnew = (
4
21) it

holds that B−1bnew = 1
3 (

5 −1
−2 1 )(

4
21) = 1

3 (
5 ⋅ 4 − 1 ⋅ 21
−2 ⋅ 4 + 1 ⋅ 21) = 1

3 (
−1
13) � 000. Since the

current basis in not feasible for the altered RHS, the prediction of the optimal value is

not valid. The prediction is optimistic, such that the optimal value of the altered problem

is < 37
3 .

Solutions to Question 4
(Lundgren et al., proof of Theorem 6.4)

For a pair of primal and dual solutions to be optimal in the respective linear optimization

problems, it must hold that (i) the solutions are feasible in their respective problems and that

(ii) their objective values are equal.

(i): Since (xB, xN ) = (B−1b,000) is an optimal basic solution to (P) it is also feasible in (P). For

y⊤ = c⊤BB−1
it holds that (B⊤y)⊤ − c⊤B = y⊤B − c⊤B = c⊤BB−1B − c⊤B = c⊤B − c⊤B = 000⊤ ≥ 000⊤, such that

the �rst set of constraints in (D) are ful�lled. Further, it holds that (N⊤y)⊤ − c⊤N = y⊤N − c⊤N =
c⊤BB−1N − c⊤N . Since (xB, xN ) = (B−1b,000) is assumed to be an optimal basic solution to (P) it must

hold that the reduced costs of the nonbasic variables are nonpositive, i.e., that c⊤N −c⊤BB−1N ≤ 000⊤.

It hence follows that also the second set of constraints in (D) are ful�lled.

(ii): Since z∗ = c⊤BxB + c⊤NxN = c⊤BB−1b + 0 = c⊤BB−1b and w∗ = b⊤y = b⊤(c⊤BB−1)⊤ = c⊤BB−1b hold, it

follows that z∗ = w∗
, which concludes the proof.
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Solutions to Question 5
(a) Relaxing the binary constraints yields the continuous knapsack problem to

maximize 5x1 + 3x2 + 3x3 + x4,
subject to 7x1 + 5x2 + 6x3 + 3x4 ≤ 14.

x1, x2, x3, x4 ∈ [0, 1].

This problem can be solved as follows:

1. Sort the ratios
cj
aj in descending order, where cj and aj denote the objective and con-

straint coe�cient, respectively, of the variable xj :
{ 5

7 , 35 , 36 , 13
}
≈ {0.714, 0.6, 0.5, 0.333}

yields the order x1, x2, x3, x4.
2. For some k ∈ {2, 3}, set xj = 1 for j = 1, … , k − 1, xk = 1

ak (14 − ∑k−1
j=1 aj) ∈ [0, 1),

xj = 0, j = k + 1, … , 4.

Branch–and–bound: Branch on the fractional variable.

P0: x = (1, 1, 16 (14−12), 0) = (1, 1, 13 , 0), z = 5 + 3 + 3
3 = 9. Branch on x3 ⇒ P1&P2

P1(x3 = 0): x = (1, 1, 0, 13 (14−12)) = (1, 1, 0, 23 ), z = 5+ 3+ 2
3 = 8.67. Branch on x4 ⇒ P3&P4

P2(x3 = 1): x = (1, 15 (14−13), 1, 0) = (1, 15 , 1, 0), z = 5 + 3
5 + 3 = 8.6. Branch on x2 ⇒ P5&P6

P3(x3 = 0, x4 = 0): x = (1, 1, 0, 0), z = 5 + 3 = 8. Prune the branch

P4(x3 = 0, x4 = 1): prune the branch

P5(x3 = 1, x2 = 0): prune the branch

P6(x3 = 1, x2 = 1): prune the branch

Since the upper bounds in all (two) branches (i.e., P1 and P2) are < 9, and since we have

found a feasible solution x = (1, 1, 0, 0) in P3, with objective value 8, we conclude that

the latter is an optimal solution. We can thus prune all branches.

(b) An optimal solution is given by x̄ = (1, 1, 0, 0)⊤. A constraint that excludes this solution,

but no other feasible solutions, is given by x1+x2 ≤ 1. Hence, state the following problem

maximize 5x1 + 3x2 + 3x3 + x4, (4a)

subject to 7x1 + 5x2 + 6x3 + 3x4 ≤ 14, (4b)

x1 + x2 ≤ 1, (4c)

x1, x2, x3, x4 ∈ {0, 1}. (4d)

If an optimal solution to the problem (4) has an objective value ≤ 7, then the solution

x = (1, 1, 0, 0) is the unique optimal solution to the problem (3). If there is an optimal

solution to (4) with objective value = 8, it must be an alternative optimal solution to (3),

since the solution x = (1, 1, 0, 0) is not feasible in (4).
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