
EXAM
MVE166/MVE165/MMG631

Linear and integer optimization with applications

• Date: 2024-08-29
– Hours: 14:00–18:00

• Aids: Text memory-less calculator; English-Swedish dictionary; pens; paper; ruler
• Number of questions: 5

– questions are not ordered by di�culty
• Requirements

– To pass the exam the student must receive at least seven (7) out of �fteen
(15) points (not including bonus points) and at least two (2) passed questions

– To pass a question requires at least two (2) points out of three (3) points
– For higher grades (i.e., 4, 5, or VG) at most two (2) bonus points can be

counted towards the grade
– Bonus points (from assignments) are valid for the three �rst exam

occasions, counted from the course round when they were gained (i.e., the
ordinary exam and the two following re-exam occasions)

• Examiner: Ann-Brith Strömberg Phone: 0705-273645

General instructions for the exam
When answering the questions

• use generally valid theory and methodology. All theoretical results and properties
used for the solutions should be properly referred to, either from the course literature
or from other scienti�c references, such as scienti�c textbooks and scienti�c journal
articles;

• state your methodology carefully;
• when reporting numerical calculations, clearly write down a reasonable number of

steps so that your understanding can be judged;
• do not use a red pen;
• do not answer more than one question per sheet.
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Question 1
[3p]

In bio-fuel depots the materials are stored in several piles within designated areas. A depot
is usually several hundred meters in both length and width. Since there is always a risk of
thermal �re in such a depot, a �re detection system is needed. Such a system can be set up
using thermal cameras placed at several locations. We wish to place thermal cameras at certain
locations such that the whole depot is continuously monitored via the cameras. There is,
however, an upper limit on the number of cameras placed in the bio-fuel depot, and we wish
to minimize the cost for setting up the system of cameras.

Assume that the depot is partitioned into m sub-areas, denoted by Si , i = 1, … ,m. There are n
potential locations for the cameras, denoted by Lj , j = 1, … , n. For each location Lj and each
sub-area Si , we de�ne the parameter

aij =

{
1, if a camera at location Lj can monitor sub-area Si ,
0, otherwise,

i = 1, … ,m, j = 1, … , n.

Denote by k the upper limit on the number of cameras placed in the depot, where k < n.
Further, let cj > 0 represent the cost of setting up a thermal camera at location Lj , j = 1, … , n.

Formulate an integer linear optimization model of the problem to choose locations for cameras,
such that all sub-areas are monitored and such that the total cost of the system of cameras is
as low as possible.
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Question 2
To determine whether or not there exists a feasible solution to the system

2x1 + 3x2 − x3 + 2x4 = 3, (1a)
x1 + x2 − 2x3 + 2x4 = 5, (1b)
x1, x2, x3, x4 ≥ 0. (1c)

one can introduce the arti�cial variables a1 and a2, and solve the phase-I problem

min w = a1 + a2, (2a)
s.t 2x1 + 3x2 − x3 + 2x4 + a1 = 3, (2b)

x1 + x2 − 2x3 + 2x4 + a2 = 5, (2c)
x1, x2, x3, x4, a1, a2 ≥ 0. (2d)

(a) [1p]

State the linear optimization dual of the problem (2).

(b) [1p]

Solve the dual problem graphically.

(c) [1p]

Use the dual optimal solution to determine whether there exists a feasible solution to
the system (1).

Question 3
Consider the integer linear optimization problem

z∗ ∶= max z = x1 + 2x2 (3a)
s.t −3x1 + 4x2 ≤ 4, (3b)

4x1 + 6x2 ≤ 23, (3c)
2x1 − x2 ≤ 5, (3d)
x1, x2 ≥ 0 and integer. (3e)

(a) [2p]

Solve the problem (3) using the Branch–and–Bound method. Illustrate your computations
in a search tree. The node subproblems may be solved graphically.

State and verify the optimal solution found using theory from the course.

(b) [1p]

Give the convex hull of the feasible set de�ned by the constraints (3b)–(3e), either in
terms of linear constraints or as convex combinations of certain points.
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Question 4
Consider the linear optimization problem to

maximize z = 4x1 + x3, (4a)
s.t x1 + 3x2 + x3 ≤ 4, (4b)

x1 − x2 ≤ 2, (4c)
x1, x2, x3 ≥ 0. (4d)

(a) [2p]

Solve this problem using the simplex method and compute all optimal solutions to the
problem.

(b) [1p]

Assume that the right–hand–side vector of the inequality constraints (4b)–(4c) is changed

from (
4
2) to (

4 + �1
2 + �2)

. For what values of the vector (
�1
�2)

∈ ℝ2 will all of the optimal

bases in (a) stay feasible?

Question 5
[3p]

Consider the following linear optimization problem:

z∗ ∶= max
x∈ℝn

c⊤x,

s.t. Ax ≤ b,
x ≥ 000,

where A ∈ ℝm×n, b ∈ ℝm, and c ∈ ℝn. Suppose that the feasible set { x ≥ 000 | Ax ≤ b } is
nonempty and that also the feasible set of its linear optimization dual is nonempty.

Formulate this corresponding linear optimization dual problem and show that weak duality
(Theorem 6.1 in the course book) holds between the primal and dual problems.
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Solution proposals to EXAM 2024-08-29
MVE166/MVE165/MMG631 Linear and integer optimization with applications

These solutions may be brief in relation to the requirements on your answers, in particular
regarding motivations.

Solutions to Question 1
De�ne the decision variables as

xj =

{
1, if a camera is placed at location Lj ,
0, otherwise,

j = 1, … , n.

The problem is modelled as a set covering problem, i.e.,

min
n

∑
j=1

cjxj ,

s.t
n

∑
j=1

aijxj ≥ 1, i = 1, … ,m,

n

∑
j=1

xj ≤ k,

xj ∈ {0, 1}, j = 1, … , n.

Solutions to Question 2
(a)

LP dual: w∗ = max 3y1 + 5y2,
s.t 2y1 + y2 ≤ 0, (5a)

3y1 + y2 ≤ 0, (5b)
−y1 − 2y2 ≤ 0, (5c)
2y1 + 2y2 ≤ 0, (5d)
y1 ≤ 1, (5e)

y2 ≤ 1, (5f)

y1−3 −2 −1 0 1 2 3

y2

−1

0

1

2

Feasible set

y∗

(5a)

(5b)

(5c)

(5d)

(5e)

(5f) (35)

(b)

5



(c) y∗ = (−1, 1)⊤, w∗ = 2 > 0 ⟹ In an optimal solution to the problem (2) at least one of
the variables a1 and a2 must take a strictly positive value. Hence the system (1) has no
feasible solution. By complementarity, since the constraint y2 ≤ 1 (y1 ≤ 1) is binding
(not binding) at y∗, the arti�cial variable a2 (a1) can (cannot) take a non-zero value at
optimum of the problem (2).

Solutions to Question 3
(a) Relaxation of the integrality constraints results in the following LP:

max z = x1 + 2x2,
s.t −3x1 + 4x2 ≤ 4, (6a)

4x1 + 6x2 ≤ 23, (6b)
2x1 − x2 ≤ 5, (6c)
x1, x2 ≥ 0.

Feasible set of the relaxed problem

x1−2 −1 1 2 3 4 5 6

x2

−1

0

1

2

3

4

feasible integer points

(6a)

(6b)

(6c)

Convex hull of the feasible set

(12)

(An illustration of the search tree should be included.)

(P0): x̄ = (2, 2.5)⊤, z̄ = 7⟹ z∗ ≤ 7
Branching: x2 ≤ 2 ⟹ (P1); x2 ≥ 3 ⟹ (P2)

(P1): x̄ = (2.75, 2)⊤, z̄ = 6.75⟹ the upper bound on z in this branch is ⌊6.75⌋ = 6
Branching: x1 ≤ 2 ⟹ (P3); x1 ≥ 3 ⟹ (P4)

(P2): infeasible, the node is pruned

(P3): x = (2, 2)⊤, z = 6⟹ z∗ ≥ 6
integer solution ⇔ candidate for optimal solution, the node is pruned

(P4): The node can be pruned, since the upper bound on z in this branch (from (P1)) is
⌊6.75⌋ = 6, and z∗ ≥ 6 (from (P3)).

An optimal solution is x∗ = (2, 2)⊤. The optimal value is z∗ = 6.

(b) The convex hull is given by conv
{
(00), (

0
1), (

2
2), (

3
1), (

2
0)
}

=
{
x = �1(00) + �2(

0
1) + �3(

2
2) + �4(

3
1) + �5(

2
0) | ∑

5
k=1 �k = 1, �k ≥ 0, k = 1, … , 5

}
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Solutions to Question 4
(a)

xB z x1 x2 x3 s1 s2 B−1b
z 1 -4 0 -1 0 0 0
s1 0 1 3 1 1 0 4
s2 0 1 -1 0 0 1 2

z 1 0 -4 -1 0 4 8
s1 0 0 4 1 1 -1 2
x1 0 1 -1 0 0 1 2

z 1 0 0 0 1 3 10 optimal basis B1
x2 0 0 1 1/4 1/4 -1/4 1/2
x1 0 1 0 1/4 1/4 3/4 5/2

z 1 0 0 0 1 3 10 optimal basis B2
x3 0 0 4 1 1 -1 2
x1 0 1 -1 0 0 1 2

There are two optimal bases: xB1 = (x2x1) and xB2 = (x3x1) corresponding to the two extreme

points (optimal basic solutions) x1∗ =
(

5/2
1/2
0 )

and x2∗ =
(

2
0
2)

.

The set of all optimal solutions is de�ned as all convex combinations of these two points:

x∗ ∈

{

(

5�/2 + 2(1 − �)
�/2

2(1 − �) )
∶ 0 ≤ � ≤ 1

}

=

{

(

2 + �/2
�/2

2 − 2�)
∶ 0 ≤ � ≤ 1

}

(b) For the basis B1 to stay feasible, it must hold that B−1
1 (

4 + �1
2 + �2)

≥ 0002.

B−1
1 (

4 + �1
2 + �2)

= (
1/2
5/2) + (

1/4 −1/4
1/4 3/4 )(

�1
�2)

= (
1/2 + 1/4�1 − 1/4�2
5/2 + 1/4�1 + 3/4�2)

≥ (
0
0)

⟺ �1 − �2 ≥ −2 and �1 + 3�2 ≥ −10

For the basis B2 to stay feasible, it must hold that B−1
2 (

4 + �1
2 + �2)

≥ 0002.

B−1
2 (

4 + �1
2 + �2)

= (
2
2) + (

1 −1
0 1 )(

�1
�2)

= (
2 + �1 − �2
2 + �2 ) ≥ (

0
0)

⟺ �1 − �2 ≥ −2 and �2 ≥ −2.

Hence, for both bases to stay feasible, the following inequalities must hold (note that the
third constraint is redundant):

�1 − �2 ≥ −2,
�2 ≥ −2,

�1 + 3�2 ≥ −10.
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Solutions to Question 5
See the course book, proof of Theorem 6.1.
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