
EXAM

MVE166/MVE165/MMG631

Linear and integer optimization with applications

2024-05-30

• Date: 2024-05-30

– Hours: 08:30–12:30

• Aids: Text memory-less calculator; English-Swedish dictionary; pens; paper; ruler

• Number of questions: 5

– questions are not ordered by di�culty

• Requirements
– To pass the exam the student must receive at least seven (7) out of �fteen

(15) points (not including bonus points) and at least two (2) passed questions

– To pass a question requires at least two (2) points out of three (3) points

– For higher grades (i.e., 4, 5, or VG) at most two (2) bonus points can be

counted towards the grade

– Bonus points (from assignments) are valid for the three �rst exam

occasions, counted from the course round when they were gained (i.e., the

ordinary exam and the two following re-exam occasions)

• Examiner: Ann-Brith Strömberg

– Phone: 0705-273645

General instructions for the exam
When answering the questions

• use generally valid theory and methodology. All theoretical results and

properties used for the solutions should be properly referred to, either from the

course literature or from other scienti�c references, such as scienti�c textbooks

and scienti�c journal articles;

• state your methodology carefully;

• when reporting numerical calculations, clearly write down a reasonable number

of steps so that your understanding can be judged;

• do not use a red pen;

• do not answer more than one question per sheet.
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Question 1
[3p]

Modelling

Suppose we wish to perform four projects, each of which will run for three consecutive years.

Each project generates an expected return (measured in MSEK) by the end of the third year,

while it requires a certain amount of capital (measured in MSEK) per year during its three

years. There is further a maximum available capital to invest in the projects during each of

those three years. The numbers are given in the table below.

Capital requirements (MSEK)

Project # Expected return (MSEK) Year #1 #2 #3

1 4.2 0.5 0.3 0.2

2 3.3 1.0 0.8 0.2

3 4.5 1.5 1.5 0.3

4 1.1 0.1 0.4 0.1

Available capital (MSEK) 3.1 2.5 0.4

Assuming that we can only start a project during the current year (#1), which of the projects

should be chosen in order to maximise the total expected return from the projects?

Formulate this problem as an integer linear optimization problem.

Do not solve the problem.

Question 2
Simplex algorithm

Consider the linear optimization problem to

maximize z = 6x1 + 5x2

s.t. x1 − 2x2 ≤ 6

x1 ≤ 10

x2 ≥ 1

x1 , x2 ≥ 0

(a) [1p]

Reformulate this optimization problem on the standard form, such that it can be solved

using the simplex method.

(b) [2p]

Solve the problem using the simplex method. At termination, what can be concluded

about the properties of an optimal solution to this problem?
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Question 3
Optimality and sensitivity analysis

Consider the linear optimization problem given by

maximize z = 2x1 + x2 + 5x3 + 6x4, (1a)

s.t. 2x1 + x3 + x4 + x5 = 8, (1b)

2x1 + 2x2 + x3 + 2x4 + x6 = 12, (1c)

x1 , x2 , x3 , x4 , x5 , x6 ≥ 0, (1d)

where the variables x5 and x6 are slack variables.

(a) [1p]

Show that the variables (x3, x4) de�ne an optimal basis for this problem. Explain your

reasoning.

(b) [1p]

Consider a new variable, x7 ≥ 0, entering the problem, with objective coe�cient c and

the constraint vector a7 = (d, e)
⊤
, resulting in the following extended problem.

maximize z
ext

= 2x1 + x2 + 5x3 + 6x4 + c ⋅ x7,

s.t. 2x1 + x3 + x4 + x5 + d ⋅ x7 = 8,

2x1 + 2x2 + x3 + 2x4 + x6 + e ⋅ x7 = 12,

x1 , x2 , x3 , x4 , x5 , x6 , x7 ≥ 0.

What relations between the coe�cients c, d , and e must hold for the basis de�ned by

the variables (x3, x4) to be an optimal basis in the extended problem?

(c) [1p]

This subquestion should be solved independently of 3(b).

Assume that the right–hand–sides in the problem (1) are altered from b = (8, 12)
⊤

to

b = (8 + �, 12)
⊤
, where � ∈ ℝ. For what values of � will the basis de�ned by the variables

(x3, x4) become infeasible in (1)?
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Question 4
Valid Inequalities

De�ne the set XIP ∶=

{

x ∈ ℤ
2

+

|
|
x1 − x2 ≤ 1, x1 + 2x2 ≤ 6

}

.

(a) [0.5p]

Draw an illustration of the set XIP and its convex hull, conv (XIP), in ℝ
2
.

(b) [1.5p]

Show that the inequality x1 + x2 ≤ 4 is a valid inequality for the set XIP.

Hint: combine the inequality constraints in the de�nition of the set XIP to derive a useful

inequality.

(c) [1p]

Does the inequality x1 + x2 ≤ 4 de�ne a face of the set conv (XIP)?

Motivate your answer.

Question 5
[3p]

Lagrangean weak duality

Consider an integer linear optimization problem stated as

z
∗

IP
= min c

⊤
x,

s.t. Ax ≤ b,

x ∈ X ,

where A ∈ ℝ
m×n

, b ∈ ℝ
m

, and X =

{

x ∈ ℤ
n

+

|
|
Dx ≤ d

}

.

A Lagrangean relaxation of the constraints Ax ≤ b de�nes the Lagrangean dual function

ℎ ∶ ℝ
m
↦ ℝ, given by

ℎ(u) = min
x∈X

{

c
⊤
x + u

⊤

(Ax − b)

}

.

Prove Theorem 17.1, that weak duality holds, i.e., show that ℎ(u) ≤ z
∗

IP
for all u ≥ 000

m
.
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Solution proposals to EXAM 2024-05-30
MVE166/MVE165/MMG631 Linear and integer optimization with applications

These solutions may be brief in relation to the requirements on your answers, in particular

regarding motivations.

Solutions to Question 1
xj = 1 if we decide to do project j, j = 1, … , 4.

xj = 0 otherwise, i.e., not do project j, j = 1, … , 4.

max 4.2x1 +3.3x2 +4.5x3 +1.1x4

0.5x1 +1.0x2 +1.5x3 +0.1x4 ≤ 3.1 (year #1)

0.3x1 +0.8x2 +1.5x3 +0.4x4 ≤ 2.5 (year #2)

0.2x1 +0.2x2 +0.3x3 +0.1x4 ≤ 0.4 (year #3)

xj ∈ {0, 1}, j = 1, … , 4.

Solutions to Question 2
(a) Standard form: include slack variables x3, x4 and x5 to get equality constraints:

maximize z = 6x1 + 5x2

s.t. x1 − 2x2 + x3 = 6

x1 + x4 = 10

x2 − x5 = 1

x1 , x2 , x3 , x4 , x5 ≥ 0

Add an arti�cial variable, x6, to �nd a feasible solution by minimizing the sum of the

arti�cial variables (phase I), which equals x6 = 1 − x2 + x5.

minimize w = − x2 + x5 + 1

s.t. x1 − 2x2 + x3 = 6

x1 + x4 = 10

x2 − x5 + x6 = 1

x1 , x2 , x3 , x4 , x6 , x6 ≥ 0

(b) Simplex solve:

xB w x1 x2 x3 x4 x5 x6 B
−1
b

w 1 0 1 0 0 -1 0 1

x3 0 1 -2 1 0 0 0 6 entering variable: x2

x4 0 1 0 0 1 0 0 10 leaving variable: x6

x6 0 0 1 0 0 -1 1 1

w 1 0 0 0 0 0 -1 0

x3 0 1 0 1 0 -2 2 8 optimum phase I: w = x6 = 0

x4 0 1 0 0 1 0 0 10

x2 0 0 1 0 0 -1 1 1
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Reinsert the original objective function z = 6x1 + 5x2 = 6x1 + 5(1 + x5 − x6) and remove x6

⟹ phase II

xB z x1 x2 x3 x4 x5 B
−1
b

z 1 -6 0 0 0 -5 5

x3 0 1 0 1 0 -2 8 entering variable: x1

x4 0 1 0 0 1 0 10 leaving variable: x3

x2 0 0 1 0 0 -1 1

z 1 0 0 6 0 -17 53

x1 0 1 0 1 0 -2 8 entering variable: x5

x4 0 0 0 -1 1 2 2 leaving variable: x4

x2 0 0 1 0 0 -1 1

z 1 0 0 -5/2 17/2 0 70

x1 0 1 0 0 1 0 10 entering variable: x3

x5 0 0 0 -1/2 1/2 1 1 leaving variable: none, unbounded solution

x2 0 0 1 -1/2 1/2 0 2

Solutions to Question 3
(a) Basis (x3, x4) ⇒ B = (

1 1

1 2)
⇒ B

−1
= (

2 −1

−1 1)
⇒ xB = (

x3

x4
) = B

−1
b = (

2 −1

−1 1)(

8

12)
= (

4

4)
≥ (

0

0)
.

x
⊤

N
= (x1, x2, x5, x6) = (0, 0, 0, 0). Hence the basis is feasible.

Reduced costs: c̄
⊤

N
= c

⊤

N
− c

⊤

B
B
−1
N = (2, 1, 0, 0) − (5, 6)(

2 −1

−1 1)(

2 0 1 0

2 2 0 1)
= (−8, −1, −4, −1) ≤ 0.

Hence, the basis is optimal.

(b) If the reduced cost of the variable x7 is non-positive, the current basis (x3, x4) will stay

optimal: c̄7 = c − c
⊤

B
B
−1
a7 = c − (5, 6)(

2 −1

−1 1)(

d

e)
= c − (4, 1)(

d

e)
= c − 4d − e ≤ 0. The basis

is optimal if it holds that c ≤ 4d + e.

(c) The basis is infeasible if xB = (

x3

x4
) = B

−1
b = (

2 −1

−1 1)(

8+�

12 )
= (

4+2�

4−� )
� (

0

0)
. ⟹ The basis is

infeasible if any of the inequalities � < −2 or � > 4 hold, i.e., whenever � ∉ [−2, 4].

Solutions to Question 4

−1 1 2 3 4

−1

1

2

3

x1

x2

(a) XIP: blue �lled circles. conv(XIP): pink polyhedron.

(b) According to Def. 14.3, a valid inequality is a linear inequality that is satis�ed for all

x ∈ XIP.
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Any convex combination of the four inequality constraints x1 −x2 −1 ≤ 0, x1 +2x2 −6 ≤ 0,

−x1 ≤ 0, and −x2 ≤ 0 de�nes a valid inequality for the set XIP.

For �i ≥ 0, i = 1, … , 4, ∑
4

i=1
�i = 1:

�1(x1 − x2 − 1) + �2(x1 + 2x2 − 6) + �3(−x1) + �4(−x2) ≤ 0

⟺

(�1 + �2 − �3)x1 + (−�1 + 2�2 − �4)x2 ≤ �1 + 6�2

Choosing �1 =
1

3
, �2 =

2

3
, and �3 = �4 = 0 then yields the inequality x1+x2 ≤

13

3
(illustrated

in the �gure by the turquoise halfspace).

Since x1 and x2 are both integers in any point in the set XIP, the right–hand–side
13

3

can be rounded down to 4 while still being valid for the set XIP. This yields the valid

inequality x1 + x2 ≤ 4 (illustrated in the �gure by the orange halfspace).

(c) The intersection of the set conv(XIP) and

{

x ∈ ℝ
2 |
|
x1 + x2 = 4

}

is a face of conv(XIP).

The point x̄ = (

2

2)
∈ XIP ⊂ conv(XIP) and it holds that x̄1 + x̄2 = 4. Hence, the inequality

x1 + x2 ≤ 4 de�nes a face of conv(XIP).

Solutions to Question 5
See the course book.
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