
EXAM

MVE166/MVE165/MMG631

Linear and integer optimization with applications

2024-01-03

• Date: 2024-01-03

– Hours: 08:30–12:30

• Aids: Text memory-less calculator; English-Swedish dictionary; pens; paper; ruler

• Number of questions: 5

– questions are not ordered by di�culty

• Requirements
– To pass the exam the student must receive at least seven (7) out of �fteen

(15) points (not including bonus points) and at least two (2) passed questions

– To pass a question requires at least two (2) points out of three (3) points

– For higher grades (i.e., 4, 5, or VG) at most two (2) bonus points can be

counted towards the grade

– Bonus points (from assignments) are valid for the three �rst exam

occasions, counted from the course round when they were gained (i.e., the

ordinary exam and the two following re-exam occasions)

• Examiner: Ann-Brith Strömberg (available only via the mobile number below)

– Phone: 0705-273645

General instructions for the exam
When answering the questions

• use generally valid theory and methodology. All theoretical results and properties

used for the solutions should be properly referred to, either from the course literature

or from other scienti�c references, such as scienti�c textbooks and scienti�c journal

articles;

• state your methodology carefully;

• when reporting numerical calculations, clearly write down a reasonable number of

steps so that your understanding can be judged;

• do not use a red pen;

• do not answer more than one question per sheet.
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Question 1
[3p]

Modeling: choose storage locations that together cover all factories

A large manufacturing company decides to construct a number of storage facilities, in order to

supply its factories.

After a careful investigation, n di�erent geographical locations are selected as candidates for

the storage facilities. Denote the factories by F1, F2, … , Fm, where m is the number of factories.

Due to physical and geographical limitations, each storage location can supply only a speci�c

subset of factories. Denote by Sk ⊆ {F1, F2, … , Fm} the subset of factories that storage location k

may cover. Also, denote by ck > 0 the cost of constructing a storage facility at the kth location.

It has to be ensured that each factory can be supplied by at least one storage facility.

The problem is to select a number of candidate locations, such that their total construction

cost is minimized. Formulate an integer (or binary) linear optimization model that solves the

problem described above.

[Hint: Assign a binary variable xk ∈ {0, 1} to each candidate location k ∈ {1, … , n} and de�ne

parameters needed to formulate the model.]

Question 2
Linear optimization duality and optimality conditions

Consider the following linear optimization problem

maximize

x∈ℝ
3

− 5x1 + 8x2 + 4x3, (1a)

subject to x1 + x2 = 2, (1b)

x2 − x3 ≤ 3, (1c)

2x1 − x3 ≥ −1, (1d)

x1 ≥ 0, (1e)

x2 ∈ ℝ, (1f)

x3 ≤ 0. (1g)

(a) [1.5p]

Formulate the linear optimization dual of the problem (1).

(b) [1.5p]

Utilize linear optimization complementarity (Theorem 6.5) to conclude whether or not

the point x̄, de�ned by x̄1 = 0, x̄2 = 2, and x̄3 = −1, is optimal in (1).
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Question 3
The simplex algorithm

(a) [2p]

Solve the linear optimization problem to

maximize z = 3x1 +x3,

subject to x1 +2x2 ≤ 4,

2x1 +x2 +x3 ≤ 10,

x1, x2, x3 ≥ 0,

using the simplex algorithm. Explain all the steps in the pre-processing as well as in the

algorithm.

(b) [1p]

Express all optimal solutions to the problem and explain the properties leading to your

expression(s).

Question 4
Integer linear optimization modelling

(a) [1p]

An optimization problem comprises the variables x1, x2, x3, and y , which are all restricted

to the values 0 or 1. The relations between these three variables should be the following:

y =

{

1 if x1 = x2 = x3 = 0,

0 otherwise.

Model these relations using linear constraints.

(b) [1p]

In a linear optimization problem with non-negative variables, it is known that neither of

the variables x1 and x2 can take a value larger than M ≫ 1. It is also required that

either the constraint 3x1 + x2 ≤ 4 or the constraint x1 + 2x2 ≥ 10

is ful�lled, but not both. Model this requirement using additional binary variables and

linear constraints.

(c) [1p]

An optimization problem contains three binary variables, x1, x2, x3 ∈ {0, 1}. Construct

linear constraints that make the solutions (x1, x2, x3) = (0, 1, 0) and (x1, x2, x3) = (1, 0, 1)

infeasible, but such that no other binary points are cut o�.
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Question 5
Basic feasible solutions and sensitivity analysis for a structured LP

Consider the graph below, consisting of a set of four nodes,  = {1, 2, 3, 4} and a set of six

directed arcs  = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 2), (3, 4)}, with a corresponding vector of arc

lengths c = (2 + �, 5, 2, 7, 2, 4 + 
)
⊤
, where � ∈ ℝ and 
 ∈ ℝ are parameters.
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De�ning the variables xij ≥ 0, for all (i, j) ∈ , the problem of �nding a shortest path from

node 1 to node 4 is formulated as to

minimize

x∈ℝ
6

(2+�)x12 +5x13 +2x23 +7x24 +2x32 +(4+
)x34, (2a)

subject to +x12 −x23 −x24 +x32 = 0, (2b)

+x13 +x23 −x32 −x34 = 0, (2c)

+x24 +x34 = 1, (2d)

x12, x13, x23, x24, x32, x34 ≥ 0. (2e)

Note that the �ow balance constraint of node 1, i.e., −x12 − x13 = −1 is omitted, since it equals a

linear combination of the balance constraints of nodes 2–4 (i.e., of the constraints (2b)–(2d)).

The model (2) is a special case of a linear optimization problem minx≥000{c
⊤
x | Ax = b}, where

(2b)–(2d) de�nes the equations Ax = b, (2e) represents x ≥ 000, and b = (0, 0, 1)
⊤
. The matrix A

can be partitioned into A = (B, N), where B is a basis matrix.

(a) [1p]

For parameter values � = 2 and 
 = 3, an optimal basis in (2) is composed by the variables

x12, x13, and x24, thus corresponding to B =
(

1 0 −1

0 1 0

0 0 1)
and N =

(

−1 1 0

1 −1 −1

0 0 1)
.

Which is the corresponding shortest path, and what is its length (optimal value)? Show

that the shortest path corresponds to a basic feasible solution. Motivate your answer

theoretically.

(b) [2p]

For what values of the parameters � ∈ ℝ and 
 ∈ ℝ is the path 1 → 2 → 3 → 4 optimal?

What is then the length of the optimal path, as a function of � and 
?

Motivate your answer by careful derivations.

You may utilize the following: The path 1 → 2 → 3 → 4 is characterized by the values

of the corresponding basic variables being x12 = x23 = x34 = 1, while x13 = x24 = x32 = 0

(the non-basic variables). This corresponds to B =
(

1 −1 0

0 1 −1

0 0 1)
and N =

(

0 −1 1

1 0 −1

0 1 0)
.
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Solution proposals to EXAM 2024-01-03
MVE166/MVE165/MMG631 Linear and integer optimization with applications

These solutions may be brief in relation to the requirements on your answers, in particular

regarding motivations.

Solutions to Question 1
De�ne for i ∈ {1, … ,m} and k ∈ {1, … , n} pa-

rameters aik , such that aik = 1 if Fi ∈ Sk and

aik = 0 if Fi ∉ Sk . The problem is modeled as

min

n

∑

k=1

ckxk ,

s.t.

n

∑

k=1

aikxk ≥ 1, i = 1, … ,m,

xk ∈ {0, 1}, k = 1, … , n.

Solutions to Question 2
(a) The LP dual is stated as

min

y∈ℝ
3

2y1 +3y2 −y3, (3a)

s.t. y1 +2y3 ≥ −5, (3b)

y1 +y2 = 8, (3c)

−y2 −y3 ≤ 4, (3d)

y1 ∈ ℝ, (3e)

y2 ≥ 0, (3f)

y3 ≤ 0. (3g)

(b) The complementarity conditions applied

to a pair (x, y), such that x is feasible in

(1) and y is feasible in (3), are stated as:

(x1 + x2 − 2)y1 = 0; (x2 − x3 − 3)y2 = 0;

(2x1 − x3 + 1)y3 = 0;

(y1 + 2y3 + 5)x1 = 0; (y1 + y2 − 8)x2 = 0;

(−y2 − y3 − 4)x3 = 0.

If x̄1 = 0, x̄2 = 2, and x̄3 = −1 corre-

sponds to an optimal point in (1) the

complementarity conditions must hold

for x = x̄ and y = ȳ, which leads to:

(0+2−2)ȳ1 = 0⋅ȳ1 = 0; (2−(−1)−3)ȳ2 =

0 ⋅ ȳ2 = 0;

(2 ⋅ 0 − (−1) + 1)ȳ3 = 2ȳ3 = 0⟹ ȳ3 = 0 ;

(ȳ1 +2ȳ3 +5) ⋅ 0 = 0; (ȳ1 + ȳ2 −8) ⋅ 2 = 0

⟹ ȳ1 + ȳ2 = 8 ;

(−ȳ2−ȳ3−4)⋅(−1) = 0⟹ ȳ2 + ȳ3 = −4 .

The framed equalities ⟹ȳ1 = 12 ((3e)

holds); ȳ2 = −4 ((3f) does not hold);

ȳ3 = 0 ((3g) holds). Since the point ȳ

is not feasible in (3), complementarity

does not hold for the pair (x̄, ȳ).

We conclude that the point x̄ is not opti-

mal in (1).

Solutions to Question 3
(a) Include slack variables x4 and x5 in the

inequality constraints ⟹ the following

LP:

max z = 3x1 +x3,

s.t. x1 +2x2 +x4 = 4,

2x1 +x2 +x3 +x5 = 10,

x1, x2, x3, x4, x5 ≥ 0.

Simplex iterations:

xB z x1 x2 x3 x4 x5 B
−1
b

z 1 -3 0 -1 0 0 0

x4 0 1 2 0 1 0 4

x5 0 2 1 1 0 1 10

z 1 0 6 -1 3 0 12

x1 0 1 2 0 1 0 4

x5 0 0 -3 1 -2 1 2

z 1 0 3 0 1 1 14

x1 0 1 2 0 1 0 4

x3 0 0 -3 1 -2 1 2

The last tableau is optimal since all re-

duced costs are ≤ 0. An optimal solution

is given by x = (4 0 2 0 0)

⊤

with

optimal value z
∗
= 14.

(b) Since the reduced cost of all non-

basic variables (x2, x4, and x5) are

strictly positive, the extreme point x =

(4 0 2 0 0)

⊤

is the unique optimal

solution.
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Solution to Question 4
(a)

y + x1 + x2 + x3 ≥ 1,

y + x1 ≤ 1,

y + x2 ≤ 1,

y + x3 ≤ 1,

(& x1, x2, x3, y ∈ {0, 1})

(b)

3x1 + x2 ≤ 4 + 4My

x1 + 2x2 ≥ 10y

0 ≤ x1, x2 ≤ M

y ∈ {0, 1}

(c)

x1 + (1 − x2) + x3 ≥ 1

⟺ x1 − x2 + x3 ≥ 0

(1 − x1) + x2 + (1 − x3) ≥ 1

⟺ x1 − x2 + x3 ≤ 1

x1, x2, x3 ∈ {0, 1}

Solutions to Question 5
(a) The inverse of the basis matrix

B =
(

1 0 −1

0 1 0

0 0 1)
is B

−1
=
(

1 0 1

0 1 0

0 0 1)
.

The corresponding basic solution is

xB = B
−1
b =

(

1 0 1

0 1 0

0 0 1)(

0

0

1)
=
(

1

0

1)
.

Hence, x12 = x24 = 1 and x13 = 0 which

corresponds to the path 1 → 2 → 4,

which, by construction, corresponds to

a BFS.

(b) The inverse of the basis matrix

B =
(

1 −1 0

0 1 −1

0 0 1)
is B

−1
=
(

1 1 1

0 1 1

0 0 1)
.

The reduced costs of the non-basic vari-

ables are then given by

c̄
⊤

N
= c

⊤

N
− c

⊤

B
B
−1
N

= (5, 7, 2)−(2+�, 2, 4+
)
(

1 1 1

0 1 1

0 0 1)(

0 −1 1

1 0 −1

0 1 0)

= … = (5, 7, 2) − (4 + �, 6 + 
 , −2)

= (1 − �, 1 − 
 , 4).

The path 1 → 2 → 3 → 4 is opti-

mal when the reduced costs are non-

negative, i.e., when � ≤ 1 and 
 ≤ 1.

The length of the optimal path is 2 + � +

2 + 4 + 
 = 8 + � + 
 . It holds that this

path is a shortest path when � ≤ 1 and


 ≤ 1 hold.
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