
EXAM

MVE165/MMG631

Linear and integer optimization with applications

7.5 hp

• Date: 2023-01-03

– Hours: 08:30–12:30

• Aids: Text memory-less calculator; English-Swedish dictionary; pens; paper; ruler

• Number of questions: 5

– questions are not ordered by di�culty

• Requirements
– To pass the exam the student must receive at least seven (7) out of �fteen

(15) points (not including bonus points) and at least two (2) passed questions

– To pass a question requires at least two (2) points out of three (3) points

– For higher grades (i.e., 4, 5, or VG) at most two (2) bonus points can be

counted towards the grade

– Bonus points (from assignments) are valid for the three �rst exam

occasions, counted from the course round when they were gained (i.e., the

ordinary exam and the two following re-exam occasions)

• Examiner: Ann-Brith Strömberg (available only via the mobile number below)

– Phone: 0705-273645

General instructions for the exam
When answering the questions

• use generally valid theory and methodology. All theoretical results and properties

used for the solutions should be properly referred to, either from the course literature

or from other scienti�c references, such as scienti�c textbooks and scienti�c journal

articles;

• state your methodology carefully;

• when reporting numerical calculations, clearly write down a reasonable number of

steps so that your understanding can be judged;

• do not use a red pen;

• do not answer more than one question per sheet.
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Question 1
Optimization modelling

A grocery store has estimated the total number of working hours needed over the next �ve

months. The current, trained sta� consists of twelve persons, and each employee can work

up to 160 hours per month. In the beginning of each month there is a possibility to hire new

sta�. A newly hired person is not considered to perform any work during his/her �rst month,

but requires instead 50 hours of supervision from a colleague who is already trained. After

one month, the new employee is considered to work (up to) full time. The salary cost during

the �rst month of a newly hired person is 75% of the salary cost for a trained sta�. Any hired

person is employed during an integer number of months, but in the end of each month it is

assumed that 15% of the trained sta� terminate their employment—for various reasons.

month number of working hours

February 600

March 750

April 850

May 900

June 800

(a) [2.5p]

Formulate a linear optimization model for minimizing the total salary cost during the

�ve month period, such that all working hours are sta�ed.

You should not solve the model.

(b) [0.5p]

Adjust your model for the case that all hired sta� has the right to work full time (i.e., 160

hours per month).
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Question 2
Optimal basic solutions and integrality of a network flow problem

For a general primal–dual pair, (P) and (D), of linear optimization problems

(P): z∗ = max { c⊤x ∶ Ax ≤ b; x ≥ 000 } and (D): w∗ = min { b⊤y ∶ A⊤y ≥ c; y ≥ 000 },

Theorem 6.4 states that if xB = B−1b is an optimal basic solution to (P) then y⊤ = c⊤BB−1
is

optimal in (D) and z∗ = w∗
.

Now, consider the linear optimization problem to

minimize x1 +3x2 +6x3 +2x4 +2x5, (1a)

subject to −x1 −x2 −x3 = −1, (1b)

x1 −x4 = 0, (1c)

x2 +x4 −x5 = 0, (1d)

x3 +x5 = 1, (1e)

x1, x2, x3, x4, x5 ≥ 0, (1f)

where the constraint (1e) is redundant and can be removed, since it equals a linear combination

of the constraints (1b)–(1d). The feasible set to the problem (1) can thus be expressed as

{
x ∈ ℝ5

+
|| the constraints (1b)–(1d) are ful�lled

}
.

(a) [2p]

Consider the three bases x1B = (x1, x4, x5), x2B = (x2, x4, x5), and x3B = (x1, x2, x3).

Utilize Theorem 6.4 to determine which of the three bases that are optimal to the problem

of minimizing the objective (1a) subject to the constraints (1b)–(1d) and (1f).

(b) [1p]

Is the point x̄ = ( 12 ,
1
2 , 0,

1
2 , 1) an optimal extreme point to the problem (1)? Motivate your

answer.

3



Question 3
The simplex algorithm

(a) [2p]

Solve the linear optimization problem to

maximize z = 2x1 +x3,
subject to x1 +2x2 ≤ 4,

2x1 +x2 +x3 ≤ 10,
x1, x2, x3 ≥ 0,

using the simplex algorithm. Explain all the steps in the pre-processing as well as in the

algorithm.

(b) [1p]

Express all optimal solutions to the problem and explain the properties leading to your

expression(s).

Question 4
Binary knapsack problem

Consider the following binary knapsack problem:

z∗ ∶= max 10x1 +20x2 +15x3 +20x4,
s.t. x1 +3x2 +2x3 +4x4 ≤ 5,

x1, x2, x3, x4 ∈ {0, 1}.

(a) [1p]

Verify that the constraint x1 + x2 + x3 + x4 ≤ 2 is a valid inequality (VI) of the convex hull

of the feasible set to the problem stated above. State carefully all properties utilized in

your derivations.

(b) [2p] [Sub-question (b) can be solved independently of (a)]

Solve the problem using the branch–and–bound algorithm.

Use a depth-�rst strategy and always search the 1-branch �rst. You may utilize the valid

inequality x1 + x2 + x3 + x4 ≤ 2 when pruning branches in the search tree.
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Question 5
LP duality end sensitivity analysis

Consider the linear optimization problem to

maximize z = 4x1 +2x2 +x3,
subject to x1 +2x2 +x3 ≤ 4,

2x1 +x2 −x3 ≤ 2,
x1, x2, x3 ≥ 0.

(a) [1p]

Formulate the linear optimization dual (LP dual) problem and solve it graphically. State

the optimal dual solution and the optimal value.

(b) [1p]

Utilize complementarity and a graphic examination of the LP dual to answer the following

question.

Suppose that the right–hand–sides of the primal constraints are changed, in such a way

that the primal feasible set stays non-empty. Which primal constraint will always be

ful�lled with equality in an optimal solution?

(c) [1p]

Utilize complementarity and a graphic examination of the LP dual to answer the following

question.

Suppose that the objective coe�cient c1 = 4 of the variable x1 is changed. For which

values of c1 is x1 not part of an optimal basis?
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Solutions

Solutions to Question 1
(a) Variable de�nition:

xj = number of newly hired persons in month j = 1, … , 5,

yj = number of trained sta� available during month j = 1, … , 5,
wj = number of hours worked by newly hired persons during month j = 1, … , 5,
zj = number of hours worked by trained sta� during month j = 1, … , 5.

Parameter de�nition: (d1, d2, d3, d4, d5) = (600, 750, 850, 900, 800).

min
5

∑
j=1

c ⋅ (0.75xj + yj),

s.t. zj − 50xj ≥dj , j = 1, … , 5,
xj + 0.85yj ≥yj+1, j = 1, … , 4,

zj ≤160yj , j = 1, … , 5,
50xj ≤ wj ≤160xj , j = 1, … , 5, (remove)

y1 =12,
xj , yj ≥0 and integer, j = 1, … , 5,
wj , zj ≥0, j = 1, … , 5.

If it is assumed that the salary cost for the sta� is proportional to the number of working

hours, then the objective is altered to:

min
5

∑
j=1

c ⋅ (0.75 ⋅
wj

160
+

zj
160)

(b) Replace the constraints zj ≤ 160yj by zj = 160yj . Replace the constraints 50xj ≤ wj ≤ 160xj
by wj = 160xj .
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Solutions to Question 2
(a) Theorem 6.4 states that if xB = B−1b is an optimal basic solution to the primal linear

optimization problem, then the point y⊤ = c⊤BB−1
is optimal in the dual problem, and the

two optimal solutions have the same objective value. The linear optimization dual of the

model (1a)–(1d), (1f) is given by

max −y1,
s.t. −y1 +y2 ≤ 1,

−y1 +y3 ≤ 3,
−y1 ≤ 6,

−y2 +y3 ≤ 2,
−y3 ≤ 2.

The basis x1B = B−1b =
(

−1 0 0
1 −1 0
0 1 −1)

−1

(

−1
0
0 )

=
(

−1 0 0
−1 −1 0
−1 −1 −1)(

−1
0
0 )

=
(

1
1
1)

=
(

x1
x4
x5)

.

Complementary dual solution: (y1)⊤ = c⊤BB−1 = (1 2 2)
(

−1 0 0
−1 −1 0
−1 −1 −1)

= (−5 −4 −2),

which is feasible in the dual. Primal and dual objective value: c⊤BB−1b = (1 2 2)
(

1
1
1)

= 5.

The basis x2B = B−1b =
(

−1 0 0
0 −1 0
1 1 −1)

−1

(

−1
0
0 )

=
(

−1 0 0
0 −1 0
−1 −1 −1)(

−1
0
0 )

=
(

1
0
1)

=
(

x2
x4
x5)

.

Complementary dual solution: (y2)⊤ = c⊤BB−1 = (3 2 2)
(

−1 0 0
0 −1 0
−1 −1 −1)

= (−5 −4 −2),

which is feasible in the dual. Primal and dual objective value: c⊤BB−1b = (3 2 2)
(

1
0
1)

= 5.

The basis x3B = B−1b =
(

−1 −1 −1
1 0 0
0 1 0 )

−1

(

−1
0
0 )

=
(

0 1 0
0 0 1
−1 −1 −1)(

−1
0
0 )

=
(

0
0
1)

=
(

x1
x2
x3)

.

Complementary dual solution: (y3)⊤ = c⊤BB−1 = (1 3 6)
(

0 1 0
0 0 1
−1 −1 −1)

= (−6 −5 −3),

which is not feasible in the dual. Primal/dual objective value: c⊤BB−1b = (1 3 6)
(

0
0
1)

= 6.

It follows that the bases x1B and x2B are optimal with corresponding optimal solutions

x1 = (1 0 0 1 1) and x2 = (0 1 0 0 1).

(b) Theorem 8.1 states that a minimum cost network �ow problem with integer constants

in all RHS:s has integer extreme points. Since (1) models a shortest path problem, being

a network �ow problem, all its extreme points have integer values. Hence, the point x̄
is not an extreme point; since it is feasible in the primal with objective value 5, it is an

optimal point, being a convex combination of the solutions x1 and x2.
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Solutions to Question 3
(a) Include slack variables x4 and x5 in the inequality constraints ⟹ the following LP:

maximize z = 2x1 +x3,
subject to x1 +2x2 +x4 = 4,

2x1 +x2 +x3 +x5 = 10,
x1, x2, x3, x4, x5 ≥ 0,

Simplex iterations:

xB z x1 x2 x3 x4 x5 B−1b
z 1 -2 0 -1 0 0 0

x4 0 1 2 0 1 0 4

x5 0 2 1 1 0 1 10

z 1 0 4 -1 2 0 8

x1 0 1 2 0 1 0 4

x5 0 0 -3 1 -2 1 2

z 1 0 1 0 0 1 10 optimal since all reduced costs are ≤ 0
x1 0 1 2 0 1 0 4

x3 0 0 -3 1 -2 1 2

An optimal solution is given by x = (4 0 2 0 0)
⊤

with optimal value z∗ = 10.

(b) Since the reduced cost c̄4 = 0, there is at least one other optimal solution. Let the variable

x4 enter the basis, such that the variable x1 has to leave the basis:

xB z x1 x2 x3 x4 x5 B−1b
z 1 0 1 0 0 1 10 optimal since all reduced costs are ≤ 0
x1 0 1 2 0 1 0 4

x3 0 0 -3 1 -2 1 2

z 1 0 1 0 0 1 10 optimal since all reduced costs are ≤ 0
x4 0 1 2 0 1 0 4

x3 0 2 1 1 0 1 10

In the next iteration, the variable x1 will enter the basis, and the variable x4 will

leave the basis, which leads back to a basis that has already been explored. The

set of optimal solutions to the LP equals the convex hull of the two optimal solu-

tions x1 = (4 0 2 0 0)
⊤

and x2 = (0 0 10 4 0)
⊤
. It follows that the opti-

mal set is given by X ∗ =
{
� (4 0 2 0 0)⊤ + (1 − �) (0 0 10 4 0)⊤ ||| 0 ≤ � ≤ 1

}
=

{
(4� 0 10 − 8� 4 − 4� 0)⊤ ||| 0 ≤ � ≤ 1

}
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Solutions to Question 4
(a) The binary knapsack problem can be equivalently stated as

z∗ = max 10x1 +20x2 +15x3 +20x4, (2a)

s.t. x1 +3x2 +2x3 +4x4 ≤ 5, (2b)

x1 ≤ 1, (2c)

x2 ≤ 1, (2d)

x3 ≤ 1, (2e)

x4 ≤ 1, (2f)

x1, x2, x3, x4 ∈ ℤ+. (2g)

Aggregating non-negative multiples the constraints (2b)–(2f)—with coe�cients 1, 3, 1, 2,

and 0, respectively—yields the inequality

1 ⋅ (x1 + 3x2 + 2x3 + 4x4) + 3 ⋅ x1 + 1 ⋅ x2 + 2 ⋅ x3 + 0 ⋅ x4 ≤ 1 ⋅ 5 + 3 ⋅ 1 + 1 ⋅ 1 + 2 ⋅ 1 + 0 ⋅ 1 = 11

⟺ 4 ⋅ (x1 + x2 + x3 + x4) ≤ 11 ⟺ x1 + x2 + x3 + x4 ≤
11
4

= 2 +
3
4
< 3

By the constraint (2g), in every feasible point all variables possess integer values. It

follows that the inequality x1 + x2 + x3 + x4 ≤ 2 holds for all feasible points, i.e., it is a VI

for the convex hull of all feasible points.

(b) In the search tree, the root node is denoted LP1; corresponding relaxed problem (LP1):

z∗ ≤ zLP1 = max 10x1 +20x2 +15x3 +20x4,
s.t. x1 +3x2 +2x3 +4x4 ≤ 5,

x1, x2, x3, x4 ∈ [0, 1].

Relaxing the integrality requirements, and branching on fractional variable values, yields

the following BnB-tree:

LP1

LP2

LP3 LP4

LP5

x2 ∶= 1

x3 ∶= 1 x3 ∶= 0

x2 ∶= 0

Solutions to the node problems and details:

LP1: xLP1 = (1 2
3 1 0)

⊤
with objective value zLP1 = 10+ 40

3 +15 = 38+ 1
3 ≥ z

∗ ⇒ z∗ ≤ 38

LP2: xLP2 = (1 1 1
2 0)

⊤
with objective value zLP2 = 10 + 20 + 15

2 = 37 + 1
2

LP3: xLP3 = (0 1 1 0)
⊤

with objective value zLP3 = 20 + 15 = 35. Since xLP3
is feasible

in the original problem, it is a candidate for optimum and yields a lower bound:
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z∗ ≥ 35. The branch is cut.

Note: since in this branch x2 = x3 = 1, the VI x1 + x2 + x3 + x4 ≤ 2 yields that

x1 = x4 = 0, which also means that the branch can be cut.

LP4: xLP4 = (1 1 0 1
4)

⊤
with objective value zLP4 = 10 + 20 + 20

4 = 35. We know that

there is a feasible solution, xLP3
, with objective value 35. The current branch cannot

contain a feasible solution with a value < 35; hence, the branch is cut

LP5: xLP5 = (1 0 1 1
2)

⊤
with objective value zLP4 = 10 + 15 + 20

2 = 35. We know that

there is a feasible solution, xLP3
, with objective value 35. The current branch cannot

contain a feasible solution with a value < 35; hence, the branch is cut

The optimal solution is x∗ = (0 1 1 0)
⊤

and the optimal objective value is z∗ =
20 + 15 = 35
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Solutions to Question 5
(a) LP dual:

v∗ = min 4y1 +2y2,
s.t. y1 +2y2 ≥ 4,

2y1 +y2 ≥ 2,
y1 −y2 ≥ 1,
y1, y2 ≥ 0.

Graphic solution:

1 2 3 4 5 6

1

2

3

4

y1

y2

b = (42)

y∗ = (21), v∗ = 10

(b) Altering the RHS:s of the primal constraints means that the coe�cients of the dual

objective changes.

In every dual feasible solution, it holds that y1 > 0. Due to complementarity of an optimal

solution, y1(x1 + 2x2 + x3 − 4) = 0. Therefore, for any optimal primal solution, it must

hold that x1 + 2x2 + x3 = 4, i.e., the �rst primal constraint will be ful�lled with equality

in any optimal solution.

(c) For c1 < 1 the �rst dual constraint y1 + 2y2 ≥ c1 is not active, i.e., for any dual feasible

solution y1 + 2y2 > c1 will hold. Due to complementarity of an optimal solution, x1(y1 +
2y2 −c1) = 0, which means that x1 = 0 will hold in any optimal solution. Hence, x1 cannot

be part of an optimal basis when c1 < 1.
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