
EXAM
MVE165/MMG631

Linear and integer optimization with applications

• Date: 2022-08-25
– Hours: 14:00–18:00

• Aids: Text memory-less calculator; English-Swedish dictionary; pens; paper; ruler
• Number of questions: 5

– questions are not ordered by di�culty
• Requirements

– To pass the exam the student must receive at least seven (7) out of �fteen
(15) points (not including bonus points) and at least two (2) passed questions

– To pass a question requires at least two (2) points out of three (3) points
– For higher grades (i.e., 4, 5, or VG) at most two (2) bonus points can be

counted towards the grade
– Bonus points (from assignments) are valid for the three �rst exam

occasions, counted from the course round when they were gained (i.e., the
ordinary exam and the two following re-exam occasions)

• Examiner: Ann-Brith Strömberg (available only via the mobile number below)
– Phone: 0705-273645

General instructions for the exam
When answering the questions

• use generally valid theory and methodology. All theoretical results and properties
used for the solutions should be properly referred to, either from the course literature
or from other scienti�c references, such as scienti�c textbooks and scienti�c journal
articles;

• state your methodology carefully;
• when reporting numerical calculations, clearly write down a reasonable number of

steps so that your understanding can be judged;
• do not use a red pen;
• do not answer more than one question per sheet.
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Question 1
[3p]

A carpentry manufactures three types of mats that are cut from boards of plywood. The boards
come in two di�erent sizes: 2 m × 2 m and 1.5 m × 1.5 m, which cost SEK 700 and SEK 590,
respectively. The mats to be cut are of three di�erent pro�les: a square, a rectangle, and a
circle. Each board can be cut in a number of patterns (indexed A–G) and each pattern yields a
certain number of each of the mat pro�les, according to the table below. At least 500 squares,
700 rectangles, and 280 circles must be manufactured.

Formulate an integer linear optimization problem that determines how many of each size of
the boards the carpentry should purchase in order to minimize its expenses?

The problem should not be solved.

Board size pattern # squares # rectangles # circles
2 × 2 A 13 1 7
2 × 2 B 0 20 3
2 × 2 C 2 2 25
2 × 2 D 20 5 5

1.5 × 1.5 E 7 2 12
1.5 × 1.5 F 0 18 1
1.5 × 1.5 G 16 1 0

Question 2
Consider the following linear optimization problem

max z = x1 +2x2 +x3, (1a)
s.t. 2x1 +x2 −x3 ≤ 2, (1b)

2x1 −x2 +5x3 ≤ 6, (1c)
4x1 +x2 +x3 ≤ 6, (1d)
x1, x2, x3 ≥ 0. (1e)

(a) [2p]

Formulate and solve the above problem using the simplex algorithm. At termination,
verify using linear optimization theory that the solution found is optimal.

(b) [1p]

Now, consider varying the right–hand–side of the constraint (1c) with � ∈ ℝ, i.e.,
replacing the constraint (1c) by the inequality 2x1 − x2 + 5x3 ≤ 6 + � .

Express the optimal value of the problem (1) as a function of � .

For what values of � is the optimal basis in (a) feasible in (1)?
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Question 3
Consider the following constraints of a linear optimization problem:

−x1 +x2 +x3 = 1 (2a)
x2 +x4 = 3 (2b)

x1, x2, x3, x4 ≥ 0 (2c)

(a) [1p]

For each of the points x1 = (2, 3, 0, 0), x2 = (0, 3, −2, 0), x3 = (2, 1, 2, 2), and x
4
= (3, 3, 1, 0),

determine whether a suitable non-constant linear objective function could make the
point optimal or uniquely optimal, or neither of these.

For each conclusion, explain your reasoning.

[Hint: you may sketch the feasible set de�ned by these constraints in a suitable 2-dimensional
plot.]

(b) [1p]

For each of the following sets of variables: {x1, x3}, {x2, x3}, {x3, x4}, {x2, x4}, {x4}, and
{x1, x2, x4}, determine whether the corresponding columns of the equality constraints
(2a)–(2b) form a basis.

(c) [1p]

For each of the sets in (b) that does form a basis, determine the corresponding basic
solution and classify it as feasible or infeasible.

Question 4
[3p]

Consider the following integer linear optimization problem (a so-called binary knapsack
problem):

z
∗
∶= maximum 5x1 +7x2 +3x3 +9x4, (3a)

subject to 2x1 +4x2 +2x3 +3x4 ≤ 8, (3b)
x1, x2, x3, x4 ∈ {0, 1}. (3c)

State and solve a linear optimization relaxation of the problem (3).

Then, make a Lagrangean relaxation of the constraint (3b) with multiplier u ≥ 0. Evaluate the
Lagrangean dual function ℎ(u) for the values u = 1, u = 2, and u = 3. (Note that each function
evaluation involves the solution of a subproblem in the x-variables.)

Utilizing the information from the totally four solutions to relaxations of the problem (3), what
upper and/or lower bounds on the optimal value z∗ can be stated?
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Question 5
[3p]

Consider the following linear optimization problem:

z
∗
∶= max

x∈ℝ
n

c
⊤
x, (4a)

s.t. Ax ≤ b, (4b)
x ≥ 000, (4c)

where A ∈ ℝ
m×n, b ∈ ℝ

m, and c ∈ ℝ
n. Suppose that the feasible set { x ≥ 000 | Ax ≤ b } is

nonempty and that also the feasible set of the linear optimization dual of the problem (4) is
nonempty.

Formulate the corresponding linear optimization dual problem and prove that weak duality
holds between the two problems.
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Solution proposals
Note that some of these solutions are quite brief and that more explanations may be needed to
pass some of the (part) questions.

Solutions to Question 1
Let xj denote the number of boards that are cut according to pattern j ∈ {A, B, C, D, E, F, G}.

The problem can then be modelled as follows

minimize 700(xA + xB + xC + xD) + 590(xE + xF + xG)

subject to 13xA + 0xB + 2xC + 20xD + 7xE + 0xF + 16xG ≥ 500

1xA + 20xB + 2xC + 5xD + 2xE + 18xF + 1xG ≥ 700

7xA + 3xB + 25xC + 5xD + 12xE + 1xF + 0xG ≥ 280

xj ≥ 0 and integer, ∀j

The number of boards to buy of size 2 m × 2 m is then given by xA +xB +xC +xD and the number
of boards to buy of size 1.5 m × 1.5 m is given by xE + xF + xG, where the variable values come
from an optimal solution to the ILP.

Solutions to Question 2
(a) Introduce slack variables, x4, x5, and x6:

max z = x1 +2x2 +x3,

s.t. 2x1 +x2 −x3 +x4 = 2,

2x1 −x2 +5x3 +x5 = 6,

4x1 +x2 +x3 +x6 = 6,

x1, x2, x3, x4, x5, x6 ≥ 0.

Simplex iterations:

xB z x1 x2 x3 x4 x5 x6 B
−1
b

z 1 -1 -2 -1 0 0 0 0
x4 0 2 1 -1 1 0 0 2
x5 0 2 -1 5 0 1 0 6
x6 0 4 1 1 0 0 1 6
z 1 3 0 -3 2 0 0 4
x2 0 2 1 -1 1 0 0 2
x5 0 4 0 4 1 1 0 8
x6 0 2 0 2 -1 0 1 4
z 1 6 0 0 1/2 0 3/2 10
x2 0 3 1 0 1/2 0 1/2 4
x5 0 0 0 0 3 1 -2 0
x3 0 1 0 1 -1/2 0 1/2 2
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The optimal solution is x = (0, 4, 2, 0, 0, 0).

Optimal basic solution: xB = (x2, x5, x3) = (4, 0, 2) ≥ 000; xN = (x1, x4, x6) = 000.

Optimality holds, since all reduced costs are negative:

c
⊤

N
− c

⊤

B
B
−1
N = (1, 0, 0) − (2, 0, 1)

(

1/2 0 1/2

3 1 −2

−1/2 0 1/2)(

2 1 0

2 0 0

4 0 1)

= (−6, −1/2, −3/2)

Alternative solution course (leading to an alternative optimal basis):

Simplex iterations:

xB z x1 x2 x3 x4 x5 x6 B
−1
b

z 1 -1 -2 -1 0 0 0 0
x4 0 2 1 -1 1 0 0 2
x5 0 2 -1 5 0 1 0 6
x6 0 4 1 1 0 0 1 6
z 1 3 0 -3 2 0 0 4
x2 0 2 1 -1 1 0 0 2
x5 0 4 0 4 1 1 0 8
x6 0 2 0 2 -1 0 1 4
z 1 6 0 0 11/4 3/4 0 10
x2 0 3 1 0 5/4 1/4 0 4
x3 0 1 0 1 1/4 1/4 0 2
x6 0 0 0 0 -3/2 -1/2 1 0

The optimal solution is x = (0, 4, 2, 0, 0, 0).

Optimal basic solution: xB = (x2, x3, x6) = (4, 2, 0) ≥ 000; xN = (x1, x4, x5) = 000.

Optimality holds, since all reduced costs are negative:

c
⊤

N
− c

⊤

B
B
−1
N = (1, 0, 0) − (2, 1, 0)

(

5/4 1/4 0

1/4 1/4 0

−3/2 −1/2 1)(

2 1 0

2 0 1

4 0 0)

= (−6, −11/4, −3/4)

(b) The optimal value is expressed as z(�) = z∗ + c⊤
B
B
−1
Δ, where Δ = (0, �, 0)⊤.

Hence, z(�) = 10 + (2, 0, 1)
(

1/2 0 1/2

3 1 −2

−1/2 0 1/2)(

0

�

0)

= 10 + (1/2, 0, 3/2)

(

0

�

0)

= 10.

The optimal basis is feasible when B
−1
(b + Δ) ≥ 000, i.e., when

(

4

0

2)

+

(

1/2 0 1/2

3 1 −2

−1/2 0 1/2)(

0

�

0)

=

(

4

�

2)

≥

(

0

0

0)

.

Hence, the optimal basis xB = (x2, x5, x3) is feasible for all � ≥ 0.

Analysis corresponding to the alternative optimal basis in a):

The optimal value is expressed as z(�) = z∗ + c⊤
B
B
−1
Δ, where Δ = (0, �, 0)⊤.
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Hence, z(�) = 10 + (2, 1, 0)
(

5/4 1/4 0

1/4 1/4 0

−3/2 −1/2 1)(

0

�

0)

= 10 + (11/4, 3/4, 0)

(

0

�

0)

= 10 +
3

4
� .

The optimal basis is feasible when B
−1
(b + Δ) ≥ 000, i.e., when

(

4

2

0)

+

(

5/4 1/4 0

1/4 1/4 0

−3/2 −1/2 1)(

0

�

0)

=

(

4 + �/4

2 + �/4

0 − �/2)

≥

(

0

0

0)

.

Hence, the optimal basis xB = (x2, x3, x6) is feasible for all � that ful�lls � ≥ −16, � ≥ −8,
and � ≤ 0, i.e., whenever the inequalities −8 ≤ � ≤ 0 hold.

Solutions to Question 3
(a) Illustration of the feasible set in the (x1, x2)-space:

-
x1

2

6

x2

1

rr
r

r
�
�
�
�
�

– x
1
= (2, 3, 0, 0) is an extreme point. E.g. the objective max{−x1 + 2x2} ⇒ unique

optimum at x1.

– x
2
= (0, 3, −2, 0) is infeasible. Hence it can neither be optimal.

– x
3
= (2, 1, 2, 2) is an interior point. Hence it cannot be optimal in an LP with a

non-constant objective.

– x
4
= (3, 3, 1, 0) is a non-extreme boundary point. E.g., the objective max{x2} ⇒

non-unique optimum at x4

(b) The following sets form bases:

– {x2, x3} ⇔ x = (0, 3, −2, 0), B =
(

1 1

1 0)

– {x3, x4} ⇔ x = (0, 0, 1, 3), B =
(

1 0

0 1)

– {x2, x4} ⇔ x = (0, 1, 0, 2), B =
(

1 0

1 1)

The following sets do not form bases:

– {x1, x3} is not a basis, since the corresponding matrix
(

−1 1

0 0)
is singular

– {x4} is not a basis, since it contains only one variable Bases have m = 2 variables,
where m is the number of equality constraints

– {x1, x2, x4} is not a basis, since it contains three variables

(c) Feasible ⇔ all values ≥ 0

– {x2, x3} ⇔ x = (0, 3, −2, 0): an infeasible basis
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– {x3, x4} ⇔ x = (0, 0, 1, 3): a feasible basis

– {x2, x4} ⇔ x = (0, 1, 0, 2): a feasible basis

Solutions to Question 4

z
∗

LP ∶= maximum 5x1 +7x2 +3x3 +9x4,

subject to 2x1 +4x2 +2x3 +3x4 ≤ 8,

x1, x2, x3, x4 ∈ [0, 1].

This continuous knapsack problem can be solved to optimality by sorting the ratios:
cj

aj

∈

{
5

2
,
7

4
,
3

2
,
9

3

}

= {2.5, 1.75, 1.5, 3}.
Optimal LP-solution: x∗

LP
= (1,

3

4
, 0, 1). z∗LP = 5 + 7 ⋅

3

4
+ 0 + 9 = 19.25 ≥ z

∗.

Lagrangean dual function:

ℎ(u) = 8u + max

xj∈{0,1},j=1,…,4

((5 − 2u)x1 + (7 − 4u)x2 + (3 − 2u)x3 + (9 − 3u)x4)

ℎ(1) = 8 + max

xj∈{0,1},j=1,…,4

(3x1 + 3x2 + 1x3 + 6x4) = 8 + 3 + 3 + 1 + 6 = 21 ≥ z
∗.

Subproblem solution x(u) = x(1) = (1, 1, 1, 1) is infeasible in (3).

ℎ(2) = 16 + max

xj∈{0,1},j=1,…,4

(1x1 − 1x2 − 1x3 + 3x4) = 16 + 1 + 0 + 0 + 3 = 20 ≥ z
∗.

Subproblem solution x(u) = x(2) = (1, 0, 0, 1) is feasible in (3) ⟺z
∗
≥ 5 + 0 + 0 + 9 = 14.

ℎ(3) = 24 + max

xj∈{0,1},j=1,…,4

( − 1x1 − 5x2 − 3x3 + 0x4) = 24 + 0 + 0 + 0 + 0 = 24 ≥ z
∗.

Subproblem solution x(u) = x(3) = (0, 0, 0, 0) is feasible in (3) ⟺z
∗
≥ 0 + 0 + 0 + 0 = 0.

We conclude that max{14, 0} ≤ z∗ ≤ min{19.25, 21, 20, 24}⟺ 14 ≤ z
∗
≤ 19 (since z∗ must be

an integer)

Solutions to Question 5
See the course book, Theorem 6.1 and its proof.
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