
EXAM

MVE165/MMG631

Linear and integer optimization with applications

• Date: 2022-06-02

– Hours: 08:30–12:30

• Aids: Text memory-less calculator; English-Swedish dictionary; pens; paper; ruler

• Number of questions: 5

– questions are not ordered by di�culty

• Requirements
– To pass the exam the student must receive at least seven (7) out of �fteen

(15) points (not including bonus points) and at least two (2) passed questions

– To pass a question requires at least two (2) points out of three (3) points

– For higher grades (i.e., 4, 5, or VG) at most two (2) bonus points can be

counted towards the grade

– Bonus points (from assignments) are valid for the three �rst exam

occasions, counted from the course round when they were gained (i.e., the

ordinary exam and the two following re-exam occasions)

• Examiner: Ann-Brith Strömberg

– Phone: 0705-273645

Due to a misprint in the exam, the proposed solution to Question 2 was erroneous. It has been

corrected below

General instructions for the exam
When answering the questions

• use generally valid theory and methodology. All theoretical results and properties used

for the solutions should be properly referred to, either from the course literature or from

other scienti�c references, such as scienti�c textbooks and scienti�c journal articles;

• state your methodology carefully;

• when reporting numerical calculations, clearly write down a reasonable number of steps

so that your understanding can be judged;

• do not use a red pen;

• do not answer more than one question per sheet.

1



Question 1
Modelling

[3p]

A transport company needs to ship n items in containers. Item j weighs aj tonnes, j = 1,… , n.

There are m containers available, and container i can carry bi tonnes, i = 1,… , m. The items

are very heavy in comparison to their sizes, and therefore it is only the weight capacity of

each container that is limiting what items can be packed in which container. The cost of using

container i is ci SEK, regardless of its weight, i = 1,… , m. The transport company wants to

choose containers such that the total cost is minimized.

Help the transport company to formulate a binary (integer) linear optimization model of the

problem described. Declare and describe your variables and constraints carefully.

[Hint: Use one set of variables for choosing containers and another set of variables to describe

what item is packed in which container.]

Question 2
The simplex algorithm and sensitivity analysis

(a) [2p]

Solve the following linear optimization problem using the simplex method.

maximize z = 6x1 + 14x2 + 13x3 (1a)

subject to x1 + 4x2 + 2x3 ≤ 48 (1b)

x1 + 2x2 − 4x3 ≤ 60 (1c)

x1 , x2 , x3 ≥ 0 (1d)

[Hint: In the �rst iteration, let x1 be the entering variable.]

(b) [1p]

Assume that the problem is extended with a new variable, xnew, with constraint coe�-

cients Anew = (3, 5)
⊤
. For what values of its objective function coe�cient, cnew, will the

optimal objective function value calculated in (a) change?
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Question 3
The Branch & Bound algorithm

The complete search tree below was produced using the branch & bound algorithm to solve

an integer linear minimization problem. The nodes are numbered according to the search

order (depth-�rst strategy over the ≥-branch). For each node k = 0,… , 12, 13, 15, zk denotes

the optimal objective value of the corresponding LP-relaxed problem. The coloured nodes

indicate feasible integer solutions. Assume that all objective function coe�cients are integers.

0 z0 = 46.3

10 z10 = 47.1

16

infeasible

11 z11 = ?

15

z15 = 53.2

12 z12 = 52.6

14

infeasible

13

z13 = 53

1 z1 = 48.2

7 z7 = 52.8

9

z9 = 57

8

z8 = 55.1

2 z2 = 51.8

4 z4 = 52.2

6

z6 = 54

5

z5 = 57.3

3

z3 = 55

(a) [1p]

Why have the nodes 5, 8, and 16 been cut? What is the optimum objective function

value?

(b) [1p]

What is the interval for z11 (node 11)?

(c) [1p]

Assume that the tree search had been stopped directly after node 9 was evaluated. What

would be the interval for the optimal objective value?

3



Question 4
Maximum flow problem and the complementary theorem

Consider a maximum �ow problem instance on a graph G = ( ,, k), given by

i j

[kij , x ij]

1

2

3 4

[3, 3]

[4, 3]

[2, 0]

[5, 3]

[3, 3]

- with the set of nodes  ∶= {1, 2, 3, 4},

- the set of directed arcs/links  ∶= {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}, and

- the link capacities k = (kij)(i,j)∈ ∶= (3, 4, 2, 5, 3).

A feasible �ow in the graph G is given by x = (x ij)(i,j)∈ ∶= (3, 3, 0, 3, 3).

The problem of maximizing the �ow from node 1 to node 4 is modelled as the following linear

optimization problem:

maximizex,v v,

subject to −x12 −x13 +v = 0,

+x12 −x23 −x24 = 0,

+x13 +x23 −x34 = 0,

+x24 +x34 −v = 0,

0 ≤ xij ≤ kij , (i, j) ∈ .

(2)

Its linear optimization dual, the so-called minimum cut problem, is de�ned as follows:

minimize� , 312 +413 +223 +524 +334,

subject to −�1 +�2 +12 ≥ 0,

−�1 +�3 +13 ≥ 0,

−�2 +�3 +23 ≥ 0,

−�2 +�4 +24 ≥ 0,

−�3 +�4 +34 ≥ 0,

+�1 −�4 = 1,

ij ≥ 0, (i, j) ∈ .

(3)

(a) [2p]

State the complementary theorem of primal and dual optimal solutions, and the resulting,

explicit formulas when it is applied to the primal–dual pair of models (2)–(3).

(b) [1p]

Then, utilize the complementary theorem to show that the �ow de�ned by the solution

x is optimal in the model (2).

[Hint: You may utilize a cut that partitions the nodes of the graph into the two sets {1, 3}

(comprising the origin node 1) and {2, 4} (comprising the destination node 4).

You may also utilize the fact that there always exists a solution to (3) for which �4 = 0.]
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Question 5
LP duality

To determine whether there exists a feasible solution to the system

2x1 + 3x2 − x3 + 2x4 = 3 (4a)

x1 + x2 − 2x3 + 2x4 = 5 (4b)

x1 , x2 , x3 , x4 ≥ 0 (4c)

one can introduce the arti�cial variables a1 and a2, and solve the phase-I problem to

minimize v = a1 + a2 (5a)

subject to 2x1 + 3x2 − x3 + 2x4 + a1 = 3 (5b)

x1 + x2 − 2x3 + 2x4 + a2 = 5 (5c)

x1 , x2 , x3 , x4 , a1 , a2 ≥ 0 (5d)

(a) [1p]

State the linear optimization dual to the problem (5).

(b) [1p]

Solve the dual problem graphically.

(c) [1p]

Use the optimal solution to the dual problem (as computed in (b)) to determine whether

or not there exists a feasible solution to the system (4).

Refer to the theoretical properties/results that are utilized for your conclusion(s).
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Solution proposals
Note that some of these solutions are quite brief and that more explanations may be needed to

pass some of the (part) questions.

Solutions to Question 1
Variables:

yi =

{

1, if container i, i = 1,… , m, is used

0, otherwise

xij =

{

1, if item j, j = 1,… , n, is packed in container i, i = 1,… , m

0, otherwise

Model:

minimize z =

m

∑

i=1

ciyi

subject to

n

∑

j=1

ajxij ≤ biyi , i = 1,… , m

m

∑

i=1

xij = 1, j = 1,… , n

xij ∈ {0, 1} ∀ i, j

yi ∈ {0, 1} ∀ i

The �rst constraint implies that no container is packed with too much weight, and no item is

packed in a container which is not used.

The second constraint implies that every item is packed in exactly one container.

Solutions to Question 2 — Corrected 220602, evening
(a) Introduce the slack variables x4, x5 ≥ 0, corrseponding to the �rst and second constraint,

respectively. Using x1 as entering variable, x4 will leave. In the next iteration, x3 will enter

and x1 leaves, which yields the optimal solution x
∗

1
= 0, x

∗

2
= 0, x

∗

3
= 24 ⟹ z

∗
= 312

xB z x1 x2 x3 x4 x5 B
−1
b

z 1 -6 -14 -13 0 0 0

x4 0 1 4 2 1 0 48

x5 0 1 2 -4 0 1 60

z 1 0 10 -1 6 0 288

x1 0 1 4 2 1 0 48

x5 0 0 -2 -6 -1 1 12

z 1 1/2 12 0 13/2 0 312

x3 0 1/2 2 1 1/2 0 24

x5 0 3 10 0 2 1 156
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(b) Optimal dual solution: (y
∗
)
⊤
= c

⊤

B
B
−1
= (13, 0)

(

1/2 0

2 1)
= (13/2, 0).

Reduced costs for xnew: c̄new = cnew − (y
∗
)
⊤

Anew = cnew − (13/2, 0)
(

3

5)
= cnew −

3⋅13

2
> 0.

If c̄new > 0 ⇔ cnew > 19.5, then xnew will enter and z
∗

increases. (Note that the optimum

is non-degenerate.)

∴ cnew > 19.5 ⟹ z
∗

changes.

Solutions to Question 3
(a) Node 5: z5 = 57.3 > z̄ = z3 = 55

Node 8: z8 = 55.1 > z̄ = z6 = 54

Node 16: the LP-relaxed problem is infeasible, and thus also the original integer problem

The optimum objective function value is z
∗
= z13 = 53.

(b) 47.1 ≤ z11 ≤ 52.6

(c) ⌈46.3⌉ = 47 ≤ z
∗
≤ 54

Solutions to Question 4
The complementarity theorem applied to the given maximum �ow problem instance states

the following: Assume that x and (�,  ) are feasible points in the primal and dual problems,

respectively. Then, they are also optimal in their respective problems if and only if the following

constraints hold:

(−�1 + �2 + 12) ⋅ x12 = 0 & 12 ⋅ (3 − x12) = 0

(−�1 + �3 + 13) ⋅ x13 = 0 & 13 ⋅ (4 − x13) = 0

(−�2 + �3 + 23) ⋅ x23 = 0 & 23 ⋅ (2 − x23) = 0

(−�2 + �4 + 24) ⋅ x24 = 0 & 24 ⋅ (5 − x24) = 0

(−�3 + �4 + 34) ⋅ x34 = 0 & 34 ⋅ (3 − x34) = 0

(�1 − �4 − 1) ⋅ v = 0 & v = x12 + x13

where . Inserting x and v in the above yields

(−�1 + �2 + 12) ⋅ 3 = 0 ⇒ −�1 + �2 + 12 = 0 & 12 ⋅ (3 − 3) = 0 ⇒ 12 ≥ 0

(−�1 + �3 + 13) ⋅ 3 = 0 ⇒ −�1 + �3 + 13 = 0 & 13 ⋅ (4 − 3) = 0 ⇒ 13 = 0

(−�2 + �3 + 23) ⋅ 0 = 0 ⇒ −�2 + �3 + 23 ≥ 0 & 23 ⋅ (2 − 0) = 0 ⇒ 23 = 0

(−�2 + �4 + 24) ⋅ 3 = 0 ⇒ −�2 + �4 + 24 = 0 & 24 ⋅ (5 − 3) = 0 ⇒ 24 = 0

(−�3 + �4 + 34) ⋅ 3 = 0 ⇒ −�3 + �4 + 34 = 0 & 34 ⋅ (3 − 3) = 0 ⇒ 34 ≥ 0

(�1 − �4 − 1) ⋅ 6 = 0 ⇒ �1 − �4 = 1 & v = 3 + 3 ⇒ v = 6

This reduces to the following equations and inequalities:

−�1 + �3 = 0; −�2 + �4 = 0; +�1 − �4 = 1;

13 = 23 = 24 = 0;

12 = �1 − �2 ≥ 0; −�2 + �3 ≥ 0; 34 = �3 − �4 ≥ 0.

This yields the relations �3 = �1 and �2 = �4 = �1 − 1.
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Setting �4 = 0 leads to �1 = �3 = 1 and �2 = 0, and further that 12 = 1, 34 = 1.

By, instead, utilizing the cut, one can compute the dual variable values according to the

following.

For nodes i ∈ {1, 3}, �i = 1, while for nodes i ∈ {2, 4}, �i = 0.

For links (i, j) passing over the cut, i.e., such that i ∈ {1, 3} and j ∈ {2, 4}, ij = 1. For all other

links, ij = 0. (Then, the dual objective value equals the sum of capacities of the links passing

over the cut.) It follows that 13 = 23 = 24 = 0 and 12 = 34 = 1.

Solutions to Question 5
(a)

maximize w = 3y1 + 5y2 (6a)

subject to 2y1 + y2 ≤ 0 (6b)

3y1 + y2 ≤ 0 (6c)

− y1 − 2y2 ≤ 0 (6d)

2y1 + 2y2 ≤ 0 (6e)

y1 ≤ 1 (6f)

y2 ≤ 1 (6g)

(b) Optimal solution to the dual problem: y
∗

1
= −1, y

∗

2
= 1, w

∗
= 2 > 0. Equality holds for the

constraints (6e) and (6g).

y1

y2

(6a)

maxw

(6b)

(6c)

(6d)

(6e)

(6f)

(6g)

y
∗
= (−1, 1)

(c) Strong duality yields that w
∗
= v

∗
= 2 > 0, which means that in the problem (5) at least

one of the arti�cial variables has a non-zero optimal value. Hence, the system (4) has no

feasible solution.

[Using the complementarity condition yields the following optimal solution to the phase-I

problem: x
∗

1
= x

∗

2
= x

∗

3
= 0, x

∗

4
=

3

2
, a1 = 0, a2 = 2, and v

∗
= 2.]
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