
Chalmers/GU EXAM
Mathematical Sciences

MVE165/MMG631
Linear and integer optimization with applications

• Date: 2022-01-03
• Hours: 08:30–12:30
• Aids: Text memory-less calculator; English-Swedish dictionary; pens; paper; ruler
• Number of questions: 5

– questions are not ordered by di�culty
• Requirements

– To pass the exam the student must receive at least seven (7) out of �fteen
(15) points (not including bonus points) and at least two (2) passed questions

– To pass a question requires at least two (2) points out of three (3)
– For higher grades (i.e., 4, 5, or VG) at most two (2) bonus points can be

counted towards the grade
– Bonus points (from assignments) are valid for the three �rst exam

occasions, counted from the course round when they were gained (i.e., the
ordinary exam and the two following re-exam occasions)

• Examiner: Ann-Brith Strömberg (0705-273645)

General instructions for the exam
When answering the questions

• use generally valid theory and methodology
• state your methodology carefully
• when reporting numerical calculations, clearly write down a reasonable number

of steps so that your understanding can be judged
• do not use a red pen
• do not answer more than one question per sheet
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Question 1
[3p]

A company produces two types of candy, to�ee and sweety, both of which contains sugar, nuts,
and chocolate.

The company has in stock 100 kg of sugar, 20 kg of nuts, and 30 kg of chocolate. The mixture
for to�ee must contain at least 20 % nuts. The mixture for sweety must contain at least 10 %
nuts and at least 10 % chocolate.

Each hg of to�ee can be sold for SEK 25 and each hg of sweety can be sold for SEK 20. It is
assumed that the demand for candy is at least as large as the quantity that can be produced in
the factory.

Formulate a linear optimization model to �nd the recipes for the mixtures of to�ee and sweety
such that only the stock content is used for the production and such that the company’s
revenue from candy sales is maximized.

Declare and describe your variables and constraints carefully.

Question 2
Consider a graph consisting of a set  of nodes, a set  of directed arcs, and a vector c of
positive lengths corresponding to the arcs in . Hence, for each arc (i, j) ∈ , cij > 0 denotes
its length.

(a) [1p]

For a general graph as de�ned above, give a linear optimization formulation of the
problem to �nd the shortest path from node s ∈  to node t ∈  .

(b) [1p]

The speci�c graph de�ned by  ∶= {1, 2, 3, 4},  ∶= {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)},
and c ∶= (2, 3, 4, 7, 5) is illustrated below. Let s = 1 and t = 4 and formulate the linear
optimization dual (LP dual) of your model in (a) for this speci�c graph.
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(c) [1p]

Utilize linear optimization strong duality to verify that 1 − 3 − 4 is a shortest path from
node 1 to node 4 in the graph above.

State carefully the properties and assumptions referred to.
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Question 3
Consider the linear optimization problem to

maximize z = 5x1 + 4x2 + x3 (1a)
s.t. 2x1 − x2 ≤ 1 (1b)

x1 + x2 − x3 ≤ 3 (1c)
x1 , x2 , x3 ≥ 0 (1d)

(a) [1p]

Formulate the problem (1) on the standard form.

(b) [2p]

Solve the problem (1) using the simplex method. At termination, what can be concluded
about the properties of an optimal solution to the problem (1)?

Question 4
Consider the linear optimization problem (LP)

z
∗

LP ∶= max
x1,x2

2x1 + c2x2, (2a)

s.t. x1 + x2 ≤ 5, (2b)
4x1 + 2x2 ≤ 17, (2c)
2x1 + 5x2 ≤ b3, (2d)
x1 , x2 ≥ 0, (2e)

and let x3, x4, and x5 denote the (non-negative) slack variables of the constraints (2b), (2c), and
(2d), respectively.

(a) [1p]

For which values of the coe�cient b3 is the point (x1, x2) = (2, 3) feasible in (2)?

(b) [1p]

For which values of the coe�cient b3 is xB = (x1, x2, x4) a feasible basis for the linear
optimization problem (2) (formulated on the standard form)?

(c) [1p]

For which values of the coe�cients b3 and c2 is xB = (x1, x2, x4) an optimal basis for the
linear optimization problem (2) (formulated on the standard form)?
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Question 5
Consider the integer linear optimization problem (ILP)

z
∗

∶= max
x1,x2

2x1 + 3x2, (3a)

s.t. x1 + 2x2 ≤ 8, (3b)
2x1 + 2x2 ≤ 11, (3c)
x1 , x2 ≥ 0 and integer. (3d)

(a) [2p]

Use the Branch-and-bound algorithm to solve the problem (3).

Use depth-�rst search and search the ≤-branch �rst. In case more than one variable has
a fractional value in the solution to a node subproblem, branch over the variable having
the lowest index. The node subproblems may be solved graphically.

State the optimal solution obtained.

(b) [1p]

Consider now a constant parameter M ≫ 1 and the ILP

z
∗

M
∶= max

x1,x2,y

2x1 + 3x2, (4a)

s.t. x1 + 2x2 − My ≤ 8, (4b)
2x1 + 2x2 + My ≤ 11 + M, (4c)
x1 , x2 ≥ 0 and integer, (4d)

y ∈ {0, 1}. (4e)

Do not solve the problem (4)!

Give the best possible (upper and/or lower) bounds on z
∗

M
based on your solution to the

problem (3) and/or the value z
∗.

Motivate your conclusion(s) carefully.
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Solution proposals
Note that some of these solutions are quite brief and that more explanations may be needed to
pass some of the (part) questions.

Solution to Question 1
Let xij be the amount (in kg) of ingredient i used for candy j.

i = 1: sugar, i = 2: nuts, i = 3: chocolate j = 1: to�ee, j = 2: sweety

maximize 25(x11 + x21 + x31) + 20(x12 + x22 + x32)

subject to x11 + x12 ≤ 100

x21 + x22 ≤ 20

x31 + x32 ≤ 30

0.2(x11 + x21 + x31) ≤ x21 ⇔ 0.2x11 − 0.8x21 + 0.2x31 ≤ 0

0.1(x12 + x22 + x32) ≤ x22 ⇔ 0.1x12 − 0.9x22 + 0.1x32 ≤ 0

0.1(x12 + x22 + x32) ≤ x32 ⇔ 0.1x12 + 0.1x22 − 0.9x32 ≤ 0

xij ≥ 0 ∀i, j

Solution to Question 2
(a)

min ∑

(i,j)∈
cijxij ,

s.t. ∑

i∈∶(i,k)∈
xik − ∑

j∈∶(k,j)∈
xkj =

⎧
⎪
⎪

⎨
⎪
⎪
⎩

−1, k = s,

1, k = t,

0, k ∈  ⧵ {s, t},

xij ≥ 0, (i, j) ∈ 

(b) For the graph de�ned by  = {1, 2, 3, 4},  = {(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}, and
c = (2, 3, 4, 7, 5) the LP dual is formulated as

max y4 − y1,

s.t. y2 − y1 ≤ 2,

y3 − y1 ≤ 3,

y3 − y2 ≤ 4,

y4 − y2 ≤ 7,

y4 − y3 ≤ 5

(c) The path 1 − 3 − 4 corresponds to the primal solution x12 = 0, x13 = 1, x23 = 0, x24 = 0,
x34 = 1, which is feasible in the model in (a) for the speci�c graph in (b).

The complementarity conditions are given by xij ⋅ (yj − yi − cij) = 0 for all (i, j) ∈ . Since
x13 = x34 = 1 > 0, it thus must hold that y3 − y1 = c13 and y4 − y3 = c34, i.e., y3 − y1 = 3

and y4 − y3 = 5. Without loss of generality, we may assume that y1 = 0, which yields
that y3 = 3 and y4 = 8. The optimal dual solution must be feasible, which means that the
inequalities y2 − y1 ≤ 2, y3 − y2 ≤ 4, and y4 − y2 ≤ 7 must hold, i.e., y2 − 0 ≤ 2 ⇔ y2 ≤ 2,
3 − y2 ≤ 4 ⇔ y2 ≥ −1, and 8 − y2 ≤ 7 ⇔ y2 ≥ 1. Hence, an optimal dual solution is
given by (y1, y2, y3, y4) = (0, 1, 3, 8). The optimal value is 8.
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Solution to Question 3
(a) Introduce the slack variables x4 and x5:

maximize z = 5x1 + 4x2 + x3

s.t. 2x1 − x2 + x4 = 1

x1 + x2 − x3 + x5 = 3

x1 , x2 , x3 , x4 , x5 ≥ 0

(b) Simplex iterations are performed according to the following:

xB z x1 x2 x3 x4 x5 B
−1
b

z 1 -5 -4 -1 0 0 0
x4 0 2 -1 0 1 0 1
x5 0 1 1 -1 0 1 3
z 1 0 -13/2 -1 5/2 0 5/2
x1 0 1 -1/2 0 1/2 0 1/2
x5 0 0 3/2 -1 -1/2 1 5/2
z 1 0 0 -16/3 1/3 13/3 40/3
x1 0 1 0 -1/3 1/3 1/3 4/3
x2 0 0 1 -2/3 -1/3 2/3 5/3

The variable x3 should enter the basis, since its reduced cost is positive (−c̄ = −16/3).
None of the basic variables can be detected to leave the basis, since all coe�cients of the
step direction corresponding to the basic variables are negative, i.e., (d1, d2) = (−1/3, −2/3).
It follows that the problem has an unbounded solution and that the objective value can
grow in�nitely large.

Solution to Question 4
(a) The constraint (2d) is ful�lled by (x1, x2) = (2, 3) whenever b3 ≥ 19. The constraints (2b),

(2c), and (2e) are ful�lled by (x1, x2) = (2, 3).

(b) The basic matrix corresponding to the basis xB = (x1, x2, x4) is given by B =

(

1 1 0

4 2 1

2 5 0)

and b = (5, 17, b3). The basis inverse is computed as B−1
=

1

3(

5 0 −1

−2 0 1

−16 3 2 )

.

The basis is feasible whenever B−1
b ≥ 000 ⟺ b3 ≤ 25, b3 ≥ 10, and b3 ≥

29

2
. Hence, the

basis is feasible for 29

2
≤ b3 ≤ 25.

(c) Any optimal basis must also be feasible; hence the constraints on b3 should be as in (b),
i.e., 29

2
≤ b3 ≤ 25.

For the basis to be optimal, the reduced costs should be non-positive (maximization
problem), i.e., c⊤

N
− c

⊤

B
B
−1
N ≤ 000

⊤.

Since N =

(

1 0

0 0

0 1)

, cB =
(

2

c2

0)

, and cN =
(

0

0)
, it thus holds that
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(0 0) −

1

3
(2 c2 0)

(

5 0 −1

−2 0 1

−16 3 2 )(

1 0

0 0

0 1)

= −

1

3
(2 c2 0)

(

5 −1

−2 1

−16 2 )

= −

1

3
(10 − 2c2 −2 + c2) ≤ (0 0).

It follows that the basis xB = (x1, x2, x4) is optimal when 29

2
≤ b3 ≤ 25 and 2 ≤ c2 ≤ 5.

Solution to Question 5
(a) The �rst node subproblem (P0) is the LP relaxation of (3):

z
∗

LP ∶= max
x1,x2

2x1 + 3x2,

s.t. x1 + 2x2 ≤ 8,

2x1 + 2x2 ≤ 11,

x1 , x2 ≥ 0.

P0 = LP relaxation: node solution: x∗P0 = (

3

5

2
)

, z∗P0 =
27

2
⟹z̄P0 = 13

P1 = P0 & "x2 ≤ 2": node solution: x∗P1 = (

7

2

2)
, z∗P1 = 13⟹ z̄P1 = 13

P2 = P1 & "x1 ≤ 3": node solution: x∗P2 = (

3

2)
, z∗P2 = 12⟹ zP2 = 12

Integer solution ⟹ cut the branch

P3 = P1 & "x1 ≥ 4": node solution: x∗P3 = (

4

3

2
)

, z∗P3 =
25

2
⟹z̄P3 = 12

Cannot contain any solution better than x
∗

P2 ⟹ cut the branch

P4 = P0 & "x2 ≥ 3": node solution: x∗P4 = (

2

3)
, z∗P4 = 13⟹ zP4 = 13

Integer solution ⟹ cut the branch

The optimal solution to (3) is x∗ =
(

2

3)
with optimal value z

∗
= 13.

(b) For a large enough value of M ≫ 1, the problem (4) is a relaxation of (3). Hence, it holds
that z∗

M
≥ z

∗
= 13.
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