
EXAM
MVE165/MMG631

Linear and integer optimization with applications

• Date: 2021-06-03

– Hours: 8:30–12:30

• Examiner: Ann-Brith Strömberg

• Aids: All aids are allowed, but cooperation is not allowed

• Number of questions: 5

– questions are not ordered by di�culty

• Requirements

– To pass the exam the student must receive at least eight (8) out of �fteen (15) points (not
including bonus points) and at least two passed questions

– To pass a question requires at least two (2) points out of three (3)

– For higher grades (i.e., 4, 5, or VG) at most two (2) bonus points can be counted towards the
grade

General instructions for the exam

When answering the questions

• use generally valid theory and methodology. All theoretical results and properties used for the
solutions should be properly referred to, either from the course literature or from other scienti�c
references, such as scienti�c textbooks and scienti�c journal articles;

• state your methodology carefully;

• when reporting numerical calculations, clearly write down a reasonable number of steps so that
your understanding can be judged;

• do not use a red pen;

• do not answer more than one question per sheet.
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Question 1

A certain type of product is assembled in two stages, A and B, in a factory. For stage A, three machines
can be used with a maximum capacity of K1, K2, and K3 units per day, respectively. For stage B, there
are two identical machines, each with a maximum capacity of U units per day. The demand for products
is D items per day. Due to the placement of the machines in the factory, it is di�erently complicated to
combine the individual machines in stages A and B. Hence, there is a cost assigned to each combination
of machines in the two stages, according to the following table.

machine B1 machine B2
machine A1 1 2
machine A2 3 2
machine A3 1 3

(a) [2p]

Formulate the problem to ful�ll the demand of products, while the capacity of each of the machines
is respected, at the lowest possible total cost, as an integer linear optimization problem. Draw an
illustration of the model.

(b) [1p]

What constraints on the values of the parameters given in the description above (i.e., K1, K2, K3,
U , and D) must hold for a feasible solution to exist to the problem stated?

Question 2

(a) [2p]

Solve the linear optimization problem to

maximize z = 3x1 + x2,
subject to x1 − x2 ≤ 2,

x1 + 2x2 ≤ 9,
x1, x2 ≥ 0,

using the simplex algorithm. Start in the origin of the (x1, x2)-space. Illustrate the optimization
problem with a �gure in the (x1, x2)-plane. Show the iterative sequence generated from the
simplex algorithm in the �gure.

(b) [1p]

Add the constraints that x1 and x2 must be integers. Use a suitable row from the optimal simplex
tableau to generate a Gomory cut. Does the cut de�ne a facet of the convex hull of the set of
feasible integer solutions? Motivate your answer.
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Question 3

Consider the linear optimization problem

z∗ ∶= max 2x1 + 3x2, (3.1a)

s.t. x1 + x2 ≤ 5, (3.1b)

2x1 + 5x2 ≤ 20, (3.1c)

x1, x2 ≥ 0. (3.1d)

(a) [1p]
Compute the shadow price (i.e., the optimal dual variable value) for each of the two inequality
constraints (3.1b) and (3.1c). [Hint: an optimal primal solution can be found graphically.]

(b) [1p]
For what values of the right-hand-side of the constraint (3.1b) is its shadow price valid?

(c) [1p]
Assume that a new variable, x3 ≥ 0, is included in the problem (3.1), with the constraint coe�cients
(column) A3 = (2, 2)⊤. For what values of its objective coe�cient c3, does it hold that its optimal
value x ∗3 > 0?

Question 4

Consider the following network, with distances dij on the directed arcs
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(a) [1p]
Provide a linear optimization formulation of the problem to �nd a shortest path from node 1 to
node 5.

(b) [2p]
Use the linear optimization dual of your model in (a) to show that the length of the shortest path
from node 1 to node 5 is −∞. Motivate all statements by theory from the course.
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Question 5

[3p]

Solve the binary knapsack problem

z∗ ∶= max 18x1 +14x2 +8x3 +4x4 ,
subject to 15x1 +12x2 +7x3 +4x4 ≤ 23 ,

x1, x2, x3, x4 ∈ {0, 1},

to optimality using the branch–and–bound method. State carefully the relaxation made and the resulting
subproblem(s). Use a depth-�rst strategy and always search the 1-branch �rst. You should also indicate
the order in which the node problems of the search tree are solved.

For each node in the search tree, you shall indicate

(i) the solution to the node subproblem,

(ii) if the branch should be cut in that node, and argue why it should or should not be cut,

(iii) any computed bound(s) on the optimal value z∗, and

(iv) in what part of the search tree each bound computed is valid.
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Solution proposals

Note that some of these solutions are quite brief and that more explanations may be needed to pass
some of the (part) questions.

Solution to Question 1

(a) Let xij = the number of products assembled �rst in machine Ai and then in Bj , i = 1, 2, 3, j = 1, 2.

minimize z =1x11+2x12+3x21+2x22+1x31+3x32
subject to x11+ x12 ≤K1

x21+ x22 ≤K2

x31+ x32 ≤K3

x11 + x21 + x31 ≤ U
x12 + x22 + x32 ≤ U

x11+ x12+ x21+ x22+ x31+ x32 ≥ D
x11, x12, x21, x22, x31, x32 ≥ 0 and integer

(b) The capacity of the machines must be at least as high as the demand for a feasible solution to
exists. Thus,

• K1 + K2 + K3 ≥ D and

• 2U ≥ D

must hold. (Or rather, since the variables are integer, ⌊K1⌋ + ⌊K2⌋ + ⌊K3⌋ ≥ ⌈D⌉ and 2⌊U ⌋ ≥ ⌈D⌉.)

Solution to Question 2

(a) Let ẑ ∶= −z = −c⊤x and write the problem on standard form:

minimize ẑ = −3x1 − x2,
subject to x1 − x2 + s1 = 2,

x1 + 2x2 + s2 = 9,
x1, x2, s1, s2 ≥ 0.

This gives the following simplex tableau (note that we start in the origin of the (x1, x2)-space):

−ẑ x1 x2 s1 s2 b̄
−ẑ 1 −3 −1 0 0 0
s1 0 1 −1 1 0 2
s2 0 1 2 0 1 9
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with x0 = (0, 0)⊤.

Iteration 1

Entering variable: min{−3, −1} = −3 ⟹ x1 enters

Leaving variable: min{ 2
1 ,

9
1} = 2 ⟹ s1 leaves

New tableau:

−ẑ x1 x2 s1 s2 b̄
−ẑ 1 0 −4 3 0 6
x1 0 1 −1 1 0 2
s2 0 0 3 −1 1 7

with x1 = (2, 0)⊤.

Iteration 2

Entering variable: min{−4} = −4 ⟹ x2 enters

Leaving variable: min{ 7
3} = 7

3 ⟹ s2 leaves

New tableau:

−ẑ x1 x2 s1 s2 b̄
−ẑ 1 0 0 5/3 4/3 46/3
x1 0 1 0 2/3 1/3 13/3
x2 0 0 1 −1/3 1/3 7/3

with x2 = 1
3 (13, 7)

⊤.

All reduced costs are nonnegative ⟹ stop!

Optimal solution: x∗ = 1
3 (13, 7)

⊤ with ẑ∗ = − 46
3 (z∗ = 46

3 in the original problem).

x1

x2

x0 x1

x2
c

Figure 1: The iterative sequence from the simplex algorithm in the (x1, x2)-plane.

(b) Gomory cut using the x1-row:

⌊1⌋ x1 + ⌊ 23⌋ s1 + ⌊ 13⌋ s2 ≤ ⌊4 13⌋

⟹ x1 ≤ 4

Gomory cut using the x2-row:

⌊1⌋ x2 + ⌊− 1
3⌋ s1 + ⌊ 13⌋ s2 ≤ ⌊2 13⌋
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⟹ x2 − s1 ≤ 2 ⟹ [s1 = 2 − x1 + x2] ⟹ x2 − 2 + x1 − x2 ≤ 2 ⟹ x1 ≤ 4

x1

x2

Figure 2: Gomory cut and the convex hull of the set of feasible integer solutions

The convex hull of the set of feasible integer solutions is de�ned by the blue area in Figure 2, to
which the added cut is not a facet.

Solution to Question 3

(a) Solving the primal problem graphically gives the optimal solution x∗ = 1
3 (

5
10)

with the optimal basis (x1, x2)⊤ and B = (
1 1
2 5).

Shadow price = Optimal dual solution: y⊤ = c⊤BB
−1 = 1

3 (2 3)(
5 −1
−2 1 ) = 1

3 (4 1)

(b) Increase the RHS of the constraint (3.1b) by � : 5 + � .

Compute B−1(b + (�0)) = 1
3 (

5 −1
−2 1 )(

5 + �
20 ) = 1

3 (
5 + 5�
10 − 2�) ≥ (

0
0)⟺ −1 ≤ � ≤ 5

(c) x ∗3 > 0 if the reduced cost c̄3 > 0:

c̄3 = c3 − c⊤BB
−1A3 = c3 − 1

3 (4 1)(
2
2) = c3 − 10

3 > 0⟺ c3 > 10
3 .

Solution to Question 4

(a) LP model:
min 2x12 −3x13 +4x23 +5x34 −10x42 +1x45

st −x12 −x13 = −1
+x12 −x23 +x42 = 0

+x13 +x23 −x34 = 0
+x34 −x42 −x45 = 0

+x45 = 1
x12, x13, x23, x34, x42, x45 ≥ 0

(b) LP dual:
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max −y1 +y5
st −y1 +y2 ≤ 2

−y1 +y3 ≤ −3
−y2 +y3 ≤ 4 (i)

−y3 +y4 ≤ 5 (ii)
+y2 −y4 ≤ −10 (iii)

−y4 +y5 ≤ 1

Sum the left- and right-hand sides, respectively, of the constraints (i), (ii), and (iii):

−y2 + y3 ≤ 4; −y3 + y4 ≤ 5; y2 − y4 ≤ −10

⟹ −y2 + y3 − y3 + y4 + y2 − y4 ≤ 4 + 5 − 10 ⟺ 0 ≤ −1,

which is a contradiction. Hence, the LP dual has no feasible solution. From duality theory (the
course book, Table 6.2 on page 141) then the primal problem, either has no feasible solution, or is
unbounded. Since the path 1–3–4–5, corresponding to the solution point given by x13 = x34 =
x45 = 1; x12 = x23 = x42 = 0, is feasible in the model in (a) we conclude that the primal problem is
unbounded, such that the objective value tends to −∞ as the values of the variables x23, x34, and
x42 tend to in�nity.

Speci�cally, any solution given by

x12 = 0; x13 = x45 = 1; x34 = 1 + t ; x23 = x42 = t

is feasible for all t ≥ 0, with objective value

2x12 − 3x13 + 4x23 + 5x34 − 10x42 + 1x45 = 0 − 3 + 4t + 5(1 + t) − 10t + 1 = 3 − t → −∞

as t → ∞.

Solution to Question 5

Relax the integrality (binary) constraints, such that each node problem becomes an LP problem, speci�-
cally a continuous knapsack problem:

z0LP = max 18x1 +14x2 +8x3 +4x4 ,
subject to 15x1 +12x2 +7x3 +4x4 ≤ 23 ,

x1, x2, x3, x4 ∈ [0, 1].

This relaxed problem is solved to optimality by setting each variable to 1, as long as there is "room left
in the knapsack"; the last non-zero variable may get a fractional value. The order in which the variables
are chosen is given by decreasing values of the ratios cj

aj , j = 1,… , 4: ( 18
15 ,

14
12 ,

8
7 ,

4
4) ≈ (1.2, 1.16, 1.14, 1).

Hence, the order x1, x2, x3, x4 is used for solving the continuous knapsack problems.

The search order is given by the node numbering P0, P1,… , P6 (see the illustration below). The solutions
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to the node problems are given by the following:

P0 ∶ x0LP = (1,
2
3
, 0, 0) ; z0LP = 18 ⋅ 1 + 14 ⋅

2
3
= 27 +

1
3
; z̄0 = ⌊z0LP⌋ = 27

P1 (x2 = 1) ∶ x1LP = (
11
15
, 1, 0, 0) ; z1LP =

66
5

+ 14 = 27 +
1
5
; z̄1 = ⌊z1LP⌋ = 27

P2 (x2 = x1 = 1) ∶ infeasible

P3 (x2 = 1; x1 = 0) ∶ x3LP = (0, 1, 1, 1) ; integer; z3LP = 14 + 8 + 4 = 26; z = z3LP = 26

P4 (x2 = 0) ∶ x4LP = (1, 0, 1,
1
4)

; z4LP = 18 + 8 + 4 ⋅
1
4
= 27; z̄4 = ⌊z4LP⌋ = 27

P5 (x2 = 0; x4 = 1) ∶ x5LP = (1, 0,
3
7
, 1) ; z5LP = 18 + 8 ⋅

3
7
+ 4 = 25 +

3
7
; z̄5 = ⌊z5LP⌋ = 25 < z = 26

P6 (x2 = x4 = 0) ∶ x6LP = (1, 0, 1, 0) ; integer; z6LP = 18 + 8 = 26; z = max{z3LP, z
6
LP} = 26

The upper bounds z0LP, z1LP, z4LP, and z5LP are valid in their respective subtrees.

The lower bound z is valid in the whole search tree.

The node P2 is cut since setting x2 = x1 = 1 leads to infeasibility in the constraints.

The nodes P3 and P6 are cut since the solutions to the corresponding node problems are integral.

The node P5 is cut, since the upper bound valid in the node (and its subtree) is lower than the computed
global lower bound.

There are two optimal solutions, given by x3LP = (0, 1, 1, 1) and x6LP = (1, 0, 1, 0), with the optimal value
z3LP = z6LP = 26.
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