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A.Heintz Telefonvakt: Alexei Heintz,Tel.: 0731431174

Tenta i ODE och matematisk modellering, MMG511, MVE162

1. Formulate and prove the theorem about the dimension of the solution space to linear
autonomous systems of ODEs. (4p)

2. Give de�nition of a stable equilibrium point to an ODE. Formulate and give a proof
to Lyapunov�s criterion for stability of equilibrium points to ODEs. (4p)

3. Consider the following system of ODE:
d�!r (t)
dt

= A�!r (t), with a constant matrix

A =

24 3 0 4
�3 1 �7
�2 0 �3

35 : Give general solution to the system. Find all initial data such
that corresponding solutions are unbounded. (4p)

4. Give de�nition of the monodromy matrix for the linear system x0 = A(t)x(t) with
periodic matrix A(t+ p) = A(t).

Formulate criterion for the boundedness of all solutions to a periodic linear system of
ODEs. (1p)

Find the monodromymatrix (scalar here) for the following linear equation with periodic
coe¢ cients

x0 =
�
a+ sin3 t

�
x

Find for which real values of parameter a all solutions are bounded. (3p)

5. Consider the following system of ODEs. Investigate stability of the equilibrium point
in the origin, and �nd a possible domain of attraction.�
x0 = 3y
y0 = �x� (4� x2)y (4p)

6. Show that the following system of ODEs has a periodic solution.�
x0 = x� 2y � x (2x2 + y2)
y0 = 4x+ y � y (2x2 + y2) (4p)

Max. 24 points;
Threshold for marks: for GU: VG: 19 points; G: 12 points; for Chalmers: 5: 21 points;

4: 17 points; 3: 12 points.
One must pass both the home assignments and the exam to pass the course.
Total points for the course are calculated as:
Total = 0:16Assignment1+ 0:16Assignment2+ 0:68Exam - that is the average of the

points for the home assignments (32%) and for this exam (68%). The same threshold is
valid for the exam, for home assignments, and for the total amount of points for the course.
Points that you have got for the assignments and for the exam are valid and are kept up

to the moment when you will collect all necessary points.
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1. Formulate and prove the theorem about the dimension of the solution space to linear
systems of ODEs. (4p)

Consider
x0(t) = Ax(t); x(t) 2 Rn; t 2 R (1)

where A is a constant n� n matrix A 2 Rn�n. In particular we will �nd solutions to
initial value problem (I.V.P. ) with initial condition

x(�) = �; (2)

We make two simple observations that are valid even for general non-autonomous linear
systems with a matrix A(t) that is not constant but is a continuous

function of time on the interval J .

x0(t) = A(t)x(t); x(t) 2 Rn; t 2 J (3)

Lemma. The sets of solutions Shom to (1), and to (3) are linear vector spaces. Proof.
Shom includes zero constant vector and is therefore not empty.
By the linearity of the time derivative x0(t) and of the matrix multiplication A(t)x(t);
for a pair of solutions x(t) and y(t) their sum x(t) + y(t) and the product Cx(t) with
a constant C are also solutions to the same equation:

(x(t) + y(t))0 = A(t)(x(t) + y(t))

(Cx(t))0 = A(t)(Cx(t))

Theorem. The dimension of the space Shom of solutions. (Proposition 2.7, p.30, L.R.
in the case of non-autonomous systems). Let b1; :::; bN be a basis in

RN(or CN). Then the functions yj : R! RN(or CN) de�ned as solutions to the I.V.P.
(1),(2) with yj(�) = bj, j = 1; :::N , by

yj(t) = exp(A(t � �))bj; form a basis for the space Shom of solutions to (1). The
dimension of the vector space Shom of solutions to (1) is equal to N -

the dimension of the system (1). Idea of the proof. This property is a consequence
of the linearity of the system and the uniqueness of solutions to the

system and is independent of detailed properties of the matrices A(t) and A in (1) and
(3).

Proof. Consider a linear combination of yj(t) equal to zero for some time � 2 R:
l(�) =

PN
j=1 �jyj(�) = 0. Observe that the trivial constant zero solution 0(t) coinsides

with l at this time point.

But by the uniqueness of solutions to (1) it implies that l(t) at arbitrary time must
coinside with the trivial zero solution for all times and in particular at
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time t = � . Therefore l(�) =
PN

j=1 �jbj = 0 (point out that yj(�) = bj). It implies
that all coe¢ cients �j = 0 because b1; :::; bN are linearly independent

vectors in RN(or CN). It implies that y1(t); :::; yN(t) are linearly independent for all
t 2 R by de�nition. Arbitrary initial data x(�) = � in RN(or CN) can be
represented as a linear combination of basis vectors b1; :::; bN : � =

PN
j=1Cjbj. The

construction of y1(t); :::; yN(t) shows that an arbitrary solution to (1)

can be represented as linear combination of y1(t); :::; yN(t).

x(t) = exp(A(t� �))� = exp(A(t� �))
NX
j=1

Cjbj =

=

NX
j=1

Cj[exp(A(t� �))bj]
=yj(t)

=

NX
j=1

Cjyj(t)

Therefore fy1(t); :::; yN(t)g is the basis in the space of solutions Shom and therefore
Shom has dimension N:�

2. Formulate and give a proof to Lyapunov�s criterion for stability of equilibrium points.
(4p)

Consider an autonomous system x0 = f(x) with f : G ! RN , G � RN open.
We suppose that f is a locally Lipschitz continuous function, so the existence and
uniqueness of maximal solutions to I.V.P. are valid.

We repeat for convenience de�nitions of stable and unstable equilibrium points (Equi-
librium points are considered here at the origin to make it simpler to

apply the construction with Lyapunov functions) Comment. In fact R+ � I� in this
case.

De�nition

An equilibrium point 0 2 G of the system x0 = f(x) is said to be stable if for each
" > 0, there is � > 0 such that for any � taken in the ball

B(�; 0)=
�
� 2 RN ; j�j < �

	
the maximal solution x(t) = '(t; �) : I� ! G on the

maximal interval I� with initial data x(0) = � and 0 2 I� will stay in the ball
B("; 0): k'(t; �)k < " for all t 2 I� \ R+.
De�nition

The function V : U ! R , U - open, containing the origin 0 2 U , is said to be positive
de�nite in U , if V (0) = 0 and V (z) > 0 for 8z 2 U , z 6= 0:
Theorem. Lyapunov�s theorem on stability. Th.5.2, p.170

Let 0 be an equilibrium point for the system above and there is a positive de�nite
continuously di¤erentiable, C1(U) function V : U ! R ; such that
U � G; 0 2 U and Vf (z) = rV � f(z) � 0 8z 2 U .
Then 0 is a stable equilibrium point.

Remark.

A function V with these properties is usually called the Lyapunov function of the
system.
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Proof.

Take an arbitrary " > 0 such that B("; 0) � U and @B("; 0) � U for @B("; 0) =
S("; 0) = fz : kzk = "g :
Let

� = min
z2S(";0)

V (z)

be a minimum of the continuous function V on the boundary of B("; 0); that is the
sphere S("; 0) = fz : jzj = "g and is a compact set (closed and bounded).
Then � > 0 because V (z) > 0 outside the equilibrium point 0.

By continuity of the function V and the fact that V (0) = 0 one can �nd a �, 0 < � < "
such that 8z 2 B(�; 0) we have V (z) < �=2.
On the other hand for any part of the trajectory x(t) = '(t; �), inside U the function
V ('(t; �)) is non-increasing because
d
dt
V ('(t; �)) = (rV � f) (x(t)) � 0.

It implies all trajectories '(t; �) with initial points � 2 B(�; 0) satisfy V (�) < �=2 .
Therefore V ('(t; �)) < �=2 and '(t; �) cannot reach the sphere S("; 0)

where V (z) � � = minz2S(";0) V (z).
Therefore any such trajectory stays within the ball B("; 0) and by the de�nition, the
equilibrium point in the origin 0 is stable.

It implies also that R+ � I� , where I� is the maximal interval for initial point �,
because the trajectory stays inside a compact set. �

3. Consider the following system of ODE:
d�!r (t)
dt

= A�!r (t), with a constant matrix

A =

24 3 0 4
�3 1 �7
�2 0 �3

35 : Give general solution to the system. Find all initial data such
that corresponding solutions are unbounded. (4p)

Solution.

Characteristic polynomial is:

det

24 3� � 0 4
�3 1� � �7
�2 0 �3� �

35 = (1� �) ((3� �) (3� �) + 8) = (1� �) (�9+�2+8) =
(1� �) (�2 � 1)
�1 = �1. Corresponding eigenvector satis�es [A� �1I] v1 = 0;24 4 0 4
�3 2 �7
�2 0 �2

3524 4 0 4
�3 2 �7
0 0 0

3524 12 0 12
�12 8 �28
0 0 0

3524 12 0 12
0 8 �16
0 0 0

3524 12 0 12
0 1 �2
0 0 0

35
eigenvector: v1 =

8<:
24 �12
1

359=;$ �1 = �1

�2 = 1. Corresponding eigenvector satis�es [A� �2I] v2 = 0;
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24 2 0 4
�3 0 �7
�2 0 �4

35!
24 2 0 4
�3 0 �7
0 0 0

35!
24 6 0 8
�6 0 �14
0 0 0

35!
24 6 0 8
0 0 �6
0 0 0

35
; v2 =

8<:
24 01
0

359=;$ �2 = 1 has multiplicity 2 and geometric mupliplicity 1:

A generalized eigenvector v(1)2 satis�es the equation [A� �2I] v(1)2 = v2; �2 = 124 2 0 4
�3 0 �7
�2 0 �4

35 =
24 01
0

35 =) v3 = v
(1)
2 =

24 2
0
�1

35
The initial data is represented in terms of two linearly independent eigenvectors and
one generalized eigenvector: � = C1v1 + C2v2 + C3v3

Using the formula for general solution, and pointing out that (A� �2) v3 = v2

x(t) = exp(At)� =
X
i

Cie
�it

m(�i)X
k=1

tk

k!
(A� �i)k = C1e�tv1 + C2etv2 + C3etv3 + C3t etv2

For all initial points � 2 R3 outside the line � = v1� where � 2 R the solutions will be
unbounded.�

4. Give de�nition of the monodromy matrix for the linear system x0 = A(t)x(t) with
periodic matrix A(t+ p) = A(t).

Formulate criterion for the boundedness of all solutions to a periodic linear system of
ODEs. (1p)

Find the monodromymatrix (scalar here) for the following linear equation with periodic
coe¢ cients

x0 =
�
a+ sin3 t

�
x

Find for which real values of parameter a all solutions are bounded. (3p)

Solution.

The transition matrix function �(t; �) is a solution to the matrix equation @
@t
�(t; �) =

A(t)�(t; �), �(� ; �) = I.

The monodromy matrix is the value �(p; 0) where p is the period of the matrix A(t).
In the scalar case we can �nd �(t; �) explicitely.

We calculate the primitive function of the coe¢ cient in the equation to write down an
explicit expression for �(t; �).

P (t) =
R �
a+ sin3 t

�
dt = at � 3

4
cos t + 1

12
cos 3t = at +

R
(1� cos2(t)) sin tdt = at �R

(1� cos2(t)) d (cos(t)) = at� cos(t) + 1
3
cos3(t).

The transition matrix function (scalar for the scalar equation) is in our case �(t; �) =
exp(P (t)� P (�)).
x(t) = exp(P (t)�P (�))x0 is a solution of the given equation with initial data x(�) = x0.
The period of the coe¢ cient in the ODE is p = 2�.

The monodromy matrix (scalar here) is the value of the transition matrix function
with starting time � = 0 and at time t equal to the period p:
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�(p; 0) = exp(P (2�)� P (0)) = exp
�
2�a� 1 + 1

3
+ 1� 1=3

�
= exp (2�a)

All solutions will be bounded if the Floquet multiplicator exp(2�a) � 1: It is valid if
and only if a � 0.�

5. Consider the following system of ODEs. Investigate stability of the equilibrium point
in the origin, and �nd a possible domain of attraction.�
x0 = 3y
y0 = �x� (4� x2)y (4p)

Solution. We choose a Lyapunov function in the form V (x; y) = x2+ay2. The choice
a = 3 is optimal, it gives Vf (x; y) = 6xy � 6xy � 2y2(4 � x2) = �2y2(4 � x2) � 0 in
the stripe where jxj � 2. Therefore the origin is a stable equilibrium point.

We apply the LaSalle invariance principle in the domain jxj < 2 to prove that the
origin is also an asymptotically stable equilibrium.

We observe that V �1f (0) = fx�axisg because Vf (x; y) = 0 if and only if y = 0: Checking
the right hand side in the system for y = 0 implies y0 = �x that is zero only in the
origin. It implies that the origin is the maximal invariant subset in V �1f (0) = fx�axisg.
Therefore the origin is asymptotically stable. The domain of attraction is the set
bounded by a level set of V (x; y) = C = x2 + 3y2 (an ellipse) that is inside the stripe
jxj � 2. The largest such ellipse goes through points x = �2, y = 0. Therefore C = 4
and the domain of attraction for the equilibrium in the origin consists of points (x; y)
satisfying the inequality x2 + 3y2 < 4 . All trajectories starting in this domain tend to
the origin with t!1.�

6. Show that the following system of ODEs has a periodic solution.�
x0 = x� 2y � x (2x2 + y2)
y0 = 4x+ y � y (2x2 + y2) (4p)

Solution. Consider the following test function: V (x; y) = 2x2 + y2. Denoting the
right hand side in the equation by vector function F (x; y) we conclude that

rV (x; y) = r (2x2 + y2) = 4x
2y
;

rV �F (x; y) =
�
4x
2y

�
�
�
x� 2y � x (2x2 + y2)
4x+ y � y (2x2 + y2)

�
= 4x2�8xy+8yx+2y2�8x4�2y4�

4x2y2 � 4y2x2 = 4x2 + 2y2 � 8x4 � 2y4 � 8x2y2;
rV � F (x; y) = 2 (2x2 + y2) (1� (2x2 + y2))
It implies that the elliptic shaped ring: R = f(x; y) : 0:5 � (2x2 + y2) � 2g is a
positive invariant compact set for the ODE, because velocity vectors are directed inside
of this ring both on it�s outer and inner boundaries ( rV � F < 0 for (2x2 + y) = 2
and rV � F > 0 for (2x2 + y) = 0:5. The origin is the only equilibrium point of the
system. One can see it by observing that V (x; y) = 2x2 + y2 is positive de�nite and
rV � F (x; y) = 0 only if (x; y) = (0; 0) or if (2x2 + y) =1:But it is easy to see from
the expression for the right hand side for the ODE that in the last case (x; y) cannot
be equilibrium point because the right hand side becomes linear with nondegenerate
matrix and is zero only in the origin (x; y) = (0; 0).

By the Poincare-Bendixson theorem the positively invariant set R not including any
equilibrium point must include at least one orbit of a periodic solution.�
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Max. 24 points;
Threshold for marks: for GU: VG: 19 points; G: 12 points; for Chalmers: 5: 21 points;

4: 17 points; 3: 12 points.
One must pass both the home assignments and the exam to pass the course.
Total points for the course are calculated as:
Total = 0:16Assignment1+ 0:16Assignment2+ 0:68Exam - that is the average of the

points for the home assignments (32%) and for this exam (68%). The same threshold is
valid for the exam, for home assignments, and for the total amount of points for the course.
Points that you have got for the assignments and for the exam are valid and are kept up

to the moment when you will collect all necessary points.
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