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1.

(MVE161)

Formulate and prove the Floquet representation for the transition matrix of a periodic
linear system of ODEs.

Theorem 2.30 , p. 53. Floquet theorem
Consider a periodic system a'(t) = A(t)x(t), with period p: A(t) = A(t + p)
Let G € CNV*¥N be a logarithm of the monodromy matrix ®(p,0) : G = log(®(p,0))

There exists a periodic with period p piecewise continuously differentiable function
O(t) : R — CMV with ©(0) = I and O(¢) non-singular (invertible,

all eigenvalues are non-zero) for all ¢, such that

B(1,0) = O(t) exp (éa) . VieR

Check lecture notes for proof. (4p)
Formulate and give a proof to Bendixson’s criterion for non-existence of periodic solu-

tions to non-linear ODEs in the plane.

Theorem. Let 2’ = f(z) with f : G — R?* G C R? be open, f € C'(G), and let
D C G be a simply connected domain (domain without "holes" even

without point holes). It is enough to require that f is locally Lipschitz in G with more
knowlege of integration theory.

Suppose that div(f) = g—ﬁ + g—g is strictly positive (or strictly negative) in D, where
T
f = [flv f?] .

Then the equation has no periodic solutions with orbits inside D.

Check lecture notes for proof. (4p)
1 0 -1
Consider the following matrix A= | —6 2 6 |,
4 -1 —4
Write down a general solution to the system of ODEs 2/ = Ax with this matrix A.
Find all initial data such that corresponding solutions are bounded. (4p)
Solution.

We start with calculation of the characteristic polynomial and finding eigenvalues to
A.
[1-X 0 -1

det | —6 2—X 6 :(1—)\)det{2__1)\ _46_A]—det{_46 2_‘9}
4 -1 —4-A

-1 —4-X 4

det oA+ N det[_6 2__1)‘]:4)\—2;



det | -6 2—X 6 =(1=XN)A\+ XN =2)—dA+2=4A- N -\ -2—
4 -1 —4-X
AA+2=-2N =X =-XNA+1)
It gives one simple eigenvalue A\; = —1 and one multiple eigenvalue Ay = 0 of multi-
plicitet 2.
Eigenvector v; to A; satisfies himogeneous system with matrix
2 0 -1 2 0 -1 2 0 —1 10 —3
Gauss Gauss Gauss
-6 3 6 — 0o 3 3 — 01 1 — 01 1
4 -1 -3 0 -1 -1 00 O 00 O
1
Figenvector v; = | —2 | - one linearly independent vector to a simple eigenvalue.
2
Eigenvector vy to Ay = 0 satisfies homogeneous system with matrix
1 0 -1 1 0 -1 10 -1 1
6 2 6 | €0 2 0 | |01 0 |.Eigenvectorv,= |0
4 -1 —4 0 -1 0 00 O 1

- one linearly independent vector to a multiple eigenvalue because only one free variable
exists in the system.

We try to find a generalised eigenvector vél) corresponding to Ay = 0 as a vector

satisfiying equation Avél) = vy with extended matrix:

1 0 -1 1 1 0 -1 1 1 0 -1 1
6 2 6 0| o 2 0 6 |01 0 3|. Generalised
4 -1 —4 1 0 -1 0 =3 00 0 O
1
eigenvector Uél) = | 3 |. Vectors vy, vo, vél) build a basis of R3 convenient for calcu-

0

lating a general solution with initial condition £ = Cyvy + Cavg + Cgvél) as
z(t) = exp(At) (C’wl + Covy + Cg’Uél))
= MOy + e Chuy + (vél) + tv2> —

€_t011}1 + CQUQ + Cg (Uél) + tvg)

Only solutions with initial conditions & = Cyv; + Cyvy from the plane spanned by

1 1
vectors vy = | —2 |and v, = | 0 | will be bounded.
2 1

. 1) Solve the initial value problem /(t) = ¢ (1 + z?), 2 (0) = &,with the domain for the
equation J x G = R?, and find maximal intervals for solutions for arbitrary £ € R.

(3p)
ii) Draw a sketch for the domain of the transition mapping ¢(¢,0,&) as a function of
two variables (¢, ). (1p)

Solution.



The equation has separable variables and is solved correspondingly.

dx
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arctan (&)
t2
tan(§ + arctan§)
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3 + arctan & < w/2
t? +2arctané <
t* < 7 — 2arctan ¢

t* < 7 —2arctan ¢

t <+/m—2arctan§

Point out that —m — 2arctan& < 0 for all £ € R because lim¢_,, arctané = /2 and

limg ,_ arctan§ = —m/2

Inax (&) = (—v/m — 2arctan &, /7 — 2arctan ). The domain of the transition mapping

©(t,0,&) is the set

D(p) = {(t,é) EER, teE(—y/m—2arctan€, \/77—2arctan§)}

Observe thaty/m — 2arctané — 0 with ¢ — oo and /7 — 2arctané — /27 with

t — —o0.
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5. Investigate stability of the equilibrium point in the origin of the following ODE and

find it’s possible domain of attraction.

¥ =—x+y—ya®
Yy =—y—x+ay?

(4p)



Solution.

The Jacobi matrix of the right hand side of the equation in the origin is the matrix
-1 1 . . .

A= [ 1 _1 ], eigenvalues: —1 — i, —1 4+ 4. tr(A) = —2 < 0, det(A) = 2 > 0, the
characteristic polynomial is p(A) = A? + 2 + 2. Point out also that (tr(A4))* /4 =1 <
det(A) = 2.

It implies accordning to the Grobman-Hartman theorem, that the origin is an asymp-
totically stable equilibrium both for the linearized system x’ = Az and for the original
non-linear system of ODEs. To find a domain of attraction of this equilibrium to the
non-linear system, we try to find a test function that would give us a boundary of
a compact positive invariant set such that all trajectories starting there tend to the
origin as ¢ — co. Try the simple test function V(z,y) = 1 (22 + y?).

y —y — x + 29>
= —2*(1+azy) —y* (1 —ay)

x —z + vy — yx?
Vi(z,y) = [ ]{ y—uy }:—x2+my—x3y—y2—yw+xy3

Observe that Vi(z,y) < 0 for 14+ 2y > 0 and 1 — zy > 0, that is equivalent to
—1 < zy and zy < 1. First inequality is satisfied for points between branches of the
(red) hyperbola y = —1/z (see the picture). The second inequality is satisfied for points
between branches of the (blue) hyperbola y = 1/x. Level sets of the test function V'
are circles (2% + y?) = C with positive constants C. The maximal such circle that
fits into the area between these two hyperbolas where the inequality V(z,y) < 0 is
satisfied, is one with radius r = v/2one: C' = 2.1t touches the hyperbolas in four points:
(1, £1).

All trajectories starting in this circle stay in it and must have an w limit set there.
Vf_l(O) consists of only the origin. According to the LaSalles invariance principle all
solutions starting inside the circle 22 + y> < 2 must tend to the origin, that is an
asymptotically stable equilibrium point. Therefore the domain 22 + y?> < 2 is the
domain of attraction for the equilibrium point in the origin.

The origin is not globally asymptotically stable, because there are other equilibrium
points, one in each quadrant.

. Formulate Poincare-Bendixson’s theorem. Show that the following system of ODEs
has a periodic solution.



v =x+y—az(2?—ay+y?)
4
{y’z—w+y—y(ﬂc2—wy+y2) (4p)

Hint. The Cauchy inequality |ab] < 0.5 (a® 4 b?) can be useful for analysis here.
Solution.
We try to use the simplest test function V(z,y) = 1 (22 + y?)

_ |z r4y—x (@ —zy+y?) .2 _ 2 4 .4
Vf(w,y)—{y} {_m+y_y(m2_$y+y2) =x*tay—zyt+y —at—y

222+ 23y + P — a? =
=22ty 2t — oy + 2ty — 2272 = 22(1 — 2% — P+ ay) (1 — 2% — 2+ ay)
It is easy to see that the ellipse 22 — zy + y*> = 1 separates areas where V;(x,y) < 0

and V(z,y) > 0. to find level sets of V' (circles), where Vi (x,y) < 0 and Vy(z,y) >0
we simplify the last expression for V; using the Cauchy inequality.

Point out that |zy| < 3 (22 + 3?).
It implies that

1 1
£E2<1 —a? =y - 5 (£E2 +y2)) + 41— 2% — 9 — 5 ($2 +y2)) < Vi(z,y)
1 1
sz(l—xz—y2+§(:L‘2+y2))+y2(1—x2—y2+§(:L’2+y2))

x2(1—g (2* + yz))+y2(1—g (2* + %)) < Vi(z,y) < xQ(l—% (2* + yz))+y2(1—% (® +9%))

It implies that 0 < Vy(z,y) in the area where (2% + y?) < % and that Vy(z,y) <0
in the area where 2 < (2% + y*).We conclude that the compact annulus set C' with
C = {(az, NE % <2249y < 2} is a positively invariant set for our system of ODEs.

We draw circles 22+y? = 2 and 22 +y* = 2 together with the (red) ellipse #* —zy+y? =
1 that separates areas where Vy(z,y) <0 and Vy(z,y) > 0:
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We need to check equilibrium points of the system that satisfy the system of equations
{ r+y—z(x*—ay+y?) =0

—r+y—y@®—ay+9*) =0
tion by x and substract from each other. It will give us an equation

Multiply the first equation by y, the second equa-

xy +y? + 2% — 2y = 0 and y? + 2% = 0, that implies that the only equilibrium point is
the origin.



Another way to prove it is to observe that V;(z) = 0 in equilibrium points.
Vi(z) = 2?(1 -2’ —y* +ay) +y*(1 - 2° =y’ +2y) = 0 = (2® +°) (1 - 2° — y* + 2y)

It implies that 1 = 22 — y? + 2y or (22 +4?) = 0. If 1 = 22 — y? + 2y = 1 the equation
for equilibrium points implies y = 0 and —z = 0. With the same conclusion.

We conclude that each trajectory ¢(t,€) with £ € C| starting in C' must have a limit
set in ', which according to the Poincare - Bendixson theorem must be a periodic
orbit, and therefore the system of equations has at least one periodic solution with
orbit in C.

Max. 24 points;

Threshold for marks: for GU: VG: 19 points; G: 12 points. For Chalmers: 5: 21 points;
4: 17 points; 3: 12 points;

One must pass both the home assignments and the exam to pass the course.

Total points for the course are calculated as:

Total = 0.16 Assignmentl + 0.16 Assignment2 + 0.68 Exzam - that is the average of the
points for the home assignments (32%) and for this exam (68%). The same threshold is
valid for the exam, for home assignments, and for the total amount of points for the course.

Points that you have got for the assignments and for the exam are valid and are kept up
to the moment when you will collect all necessary points.



