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Tenta i ODE och matematisk modellering, MMG511, MVE162 (MVE161)

Answer �rst those questions that look simpler, then take more complicated ones etc.
Good luck!

1. Formulate and give a proof to the theorem about the dimension of the solution space
of the system of linear ODEs. Check the formulation and the proof in lecture notes.
(4p)

2. Formulate and give a proof to Lyapunov�s stability theorem. Check the formulation
and the proof in the lecture notes. (4p)

3. Consider the following matrix A =

24 �1 1 �1
2 1 �1
0 3 �3

35
a) Write down a canonical Jordan form J for the matrix A and �nd the corresponding
matrix P in the relation J = P�1AP using eigenvectors and generalised eigenvectors
to A (do not calculate P�1):

b) Write down a general solution to the system x0 = Ax with this matrix A:Find all
initial data such that corresponding solutions are bounded. (4p)

Solution. The characteristic polinomial for the matrix A =

24 �1 1 �1
2 1 �1
0 3 �3

35 is p(�) =
�3 + 3�2.

(a) Eigenvalues are �1 = 0 with multiplicity 2 and �2 = �3.
Eigenvector v1 corresponding to �1 satis�es the equation Av1 = 0 and can be

chosen as

24 01
1

35. The generalized eigenvector v(1)1 satis�es the equation Av(1)1 = v1

and can be chosen as

24 1=34=3
1

35 :The eigenvector v2 corresponding to the simple
eigenvalue �2 = �3 satis�es the the homogeneous equation (A+ 3I) v2 = 0 with

the matrix (A+ 3I) =

24 2 1 �1
2 4 �1
0 3 0

35 and can be chosen as v2 =
24 10
2

35.
The canonical Jordan form J for the matrix A has the form J =

24 0 1 0
0 0 0
0 0 �3

35
with matrix P =

24 0 1=3 1
1 4=3 0
1 1 2

35 with columns that are eigenvectors and a gener-
alised eigenvector.
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The general solution x(t) = eAtx0 to the equation can be written by choosing
the initial data x0 expressed in terms of the basis of eigenvectors and generalized
eigenvectors: x0 = C1v1 + C2v

(1)
1 + C3v2 and using for each term the represen-

tation for the exponent eAt acting on an element x0;j of a particular generalized
eigenspace:

eAtx0;j =
hPmj�1

k=0 (A� �jI)k t
k

k!

i
e�jtx0;j

where mj is the algebraic multiplicity of the eigenvalue �j and x0;j is an element
of the corresponding generalized eigenspace. It implies that the general solution is
the linear combination of expressions of this type and is expressed in our particular
case as
x(t) = C1v1 + C2v

(1)
1 + t C2v1 + C3e

�3tv2

because m1 = 2, m2 = 1, and (A� �1I)v(1)1 = v1. The solutions will be bounded
for all x0 in the form x0 = C1v1 + C3v2:

4. The following system of equations describes the evolution of variables x and y repre-
senting scaled numbers of two competing species.�
x0 = x (2� x� y)
y0 = y (3� 2x� y)

Explain by analysing system�s equilibrium points, and nullclines, how these equations
make it mathematically possible but extremely unlikely for both species to survive
together. (4p)

Solution. There is only one possible equilibrium point: x = 1, y = 1 with both
components non-zero. It is the only possible point for both species to survive together.

We try to analyse stability of this point using linearization. The variational matrix is

A(x; y) =

�
2� 2x� y �x
�2y 3� 2x� 2y

�����
(x;y)=(1;1)

=

�
�1 �1
�2 �1

�
;

The characteristic equation is �2 + 2�� 1 = 0:

It�s eigenvectors and eigenvalues in the point (x; y) = (1; 1) are: v1 =
��

1
2

p
2
1

��
$

�1 = �
p
2� 1 < 0; v2 =

�
�1
2

p
2

1

�
$ �2 =

p
2� 1 > 0;

The linearized system has a saddle point in the origin, that is hyperbolic because
both eigenvalues have a nonzero real part. General solution to the linearized system
is r = C2e

�(
p
2+1)tv1 + C2e

(
p
2�1)tv2. The only initial data giving solutions tending to

the origin with t!1 are those on the line r = C1v1.

The Grobman-Hartmann theorem states that in the neighbourhood of the point (1; 1)
the phase portrait of the original nonlinear system is homeomor�c to the one of the

linear system�!r 0 =
�
�1 �1
�2 �1

�
�!r . Therefore there is an orbit through the equilibrium

point (1; 1) such that evolution of the original system starting on this orbit leads to
the equilibrium point. All other trajectories escape this equilibrium point as they do
for the linearized equation.

The nulclines to the system that are x = 0 ; x + y = 2 that are x - nullclines and
y = 0; 2x+ y = 3; that are y - nullclines.
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The analysis of directions of velocities in the domains in the �rst quadrant that are
bounded by the nullclines shows that almost all trajectories tend to two equilibrium
points (0; 3) and (2; 0) leading to extinction of one of the species, except two particular
orbits discused above and tending to the non-stable saddle point (1; 1). (4p)

5. Investigate the stability of the origin and �nd it�s possible domain of stability for the
following system of ODE by using an appropriate Lyapunov function.�
x0 = y
y0 = �y + y3 � x5 (4p)

Solution.

We choose a test function V (x; y) = x6 + ay2 with unknown positive coe¢ cient a
because there are terms x5 in the second equation and y both in the �rst and in the
second equation. We calculate

rV � f =
�
6x5

2ay

�
�
�
y
�y + y3 � x5

�
= 6x5y � 2ay2 + 2ay4 � 2ayx5

and observe that with the choice a = 3 and V (x; y) = x6 + 3y2 we get:

rV � f = 6x5y � 6y2 + 6y4 � 6yx5 = �6y2 (1� y2) � 0
for jyj � 1. Therefore the stationary point in the origin is stable by Lyapunov�s
theorem.

To decide if it asymptotically stable or not we check the set of points (x; y) where
rV � f = 0 These are points on the x - axis: y = 0.
We observe that trajectories starting on the x - axis have velocities in the y - direction
y0 = �x5 that are zero only in the origin (0; 0). Therefore all trajectories starting on
the x - axis leave it except the trajectory starting in the origin that is a stationary
point. Therefore there are no complete orbits on the x axis except the origin and
the origin is asymptotically stable by a corollary to the Krasovsky - la�Salle principle.
Level sets of of the Lyapunovs function V (x; y) = x6 + 3y2 are ellipse like closed
curves symmetric with respect to coordinate axes. The "largest" such level set inside
the stripe jyj � 1 must, because of the symmetry, go through the point (0; 1) and is
V (0; 1) = 3. Therefore the domain of attraction for the equilibrium in the origin can
be identi�ed as the domain inside the level set V (x; y) = 3:

S =
�
(x; y) : x6 + 3y2 < 3
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6. Show that the following system of ODE-s has a periodic solution.�
x0 = 4x+ y � x

�
5x2 � 2

p
3xy + 7y2

�
y0 = �x+ 4y � y

�
5x2 � 2

p
3xy + 7y2

� (4p)

Hint. The Cauchy inequality jabj � 0:5 (a2 + b2) can be useful for analysis here.
Solution. We like to apply the Poincare-Bendixson theorem to prove that the system
has a periodic solution by showing that some of it�s trajectories must have a periodic
orbit as an !-limit set. To show it we �nd a positively - invariant set that does not
include equilibrium points. By the Poincare-Bendixson theorem all trajectories starting
in this positively invariant set will have an ! limit set that is a periodic orbit.

We consider the test function V (x; y) = 1
2
(x2 + y2) and try to �nd two such circles

(level sets to V (x; y)) that they bound a positively invariant set .

Vf (x; y) =

�
4x+ y � x

�
5x2 � 2

p
3xy + 7y2

�
�x+ 4y � y

�
5x2 � 2

p
3xy + 7y2

� � � x
y

�
=

x
�
4x+ y � x

�
5x2 � 2

p
3xy + 7y2

��
+ y

�
�x+ 4y � y

�
5x2 � 2

p
3xy + 7y2

��
=�

4�
�
5x2 � 2

p
3xy + 7y2

��
(x2 + y2) :

We see that Vf (x; y) < 0 for 4 �
�
5x2 � 2

p
3xy + 7y2

�
< 0 and Vf (x; y) > 0 for

4�
�
5x2 � 2

p
3xy + 7y2

�
> 0.

The curve 4 =
�
5x2 � 2

p
3xy + 7y2

�
is an ellipse (red curve on the picture) because the

expression
�
5x2 � 2

p
3xy + 7y2

�
is positive de�nite by the Cauchy inequality jxyj �

0:5 (x2 + y2) :

5x2 � 2
p
3xy + 7y2 � 5x2 � 2

p
3 (x2 + y2) 0:5 + 7y2 = x2

�
5�

p
3
�
+ y2(7�

p
3) > 0,

(x; y) 6= 0:
One can also observe it by investigating eigenvalues of the matrics corresponding this
quadratic form:

Q(x; y) = 5x2 � 2
p
3xy + 7y2 =

�
x y

� � 5 �
p
3

�
p
3 7

� �
x
y

�
.
�

5 �
p
3

�
p
3 7

�
.

The matrix
�

5 �
p
3

�
p
3 7

�
has eigenvalues: 4; 8 > 0; eigenvectors are orthogonal

vectors
� p

3=2
0:5

�
and

�
�0:5p
3=2

�
that de�ne the orientation of the ellips.

This ellipse separates the area where Vf (x; y) < 0 and trajectories of the system go
inside circles, that are level sets of V (x; y) from the area where Vf (x; y) > 0 and
trajectories of the system go outside circles that are level sets of V (x; y).
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Finding two circles x2 + y2 = R2 and x2 + y2 = r2 , R > r > 0 such that the �rst
one is completely outside the ellipse 4 =

�
5x2 � 2

p
3xy + 7y2

�
and the second one is

completely inside the ellipse, will give us the desired ring shaped positively invariant
set: r2 < x2 + y2 < R2. It is intuitively evident that such R - large enough and r -
small enough exist.

Then we must check that the ring shaped positively invariant set does not contain any
equilibrium points. In any equilibrium point we must have Vf (x; y) = 0. It implies
that (x2 + y2)

�
4�

�
5x2 � 2

p
3xy + 7y2

��
= 0 that gives us that an equilibrium point

must be in the origin, that is outside our positively invariant set, or on the ellipse
4 =

�
5x2 � 2

p
3xy + 7y2

�
. We observe from the ODE, that on this ellipse x0 = y

and y0 = �x. Therefore equilibrium points can be only the origin (x; y) = (0; 0): It is
outside the ellipse and outside the positively invariant set.

Therefore all trajectories starting in the positively invariant set r2 < x2 + y2 < R2

must have an ! - limit set inside it and this limit set must be a periodic orbit by the
Poincare-Bendixson theorem. Therefore the system must have at least one periodic
orbit inside the positively invariant set:

We can also �nd some explicit estimates for R and r:

We consider the expression
�
4�

�
5x2 � 2

p
3xy + 7y2

��
and try to �nd a circle x2+y2 =

R2 such that
�
4�

�
5x2 � 2

p
3xy + 7y2

��
< 0 on it:�

4�
�
5x2 � 2

p
3xy + 7y2

��
�
�
4� 5x2 + 2

p
3 jxyj � 7y2

�
�
�
4� 5x2 +

p
3 (x2 + y2)� 7y2

��
4� 5x2 +

p
3 (x2 + y2)� 7y2

�
= 4�

�
5�

p
3
�
x2 �

�
7�

p
3
�
y2 � 4�

�
5�

p
3
�
x2 ��

5�
p
3
�
y2 � 0:

Therefore for x2 + y2 = R2 � 4=
�
5�

p
3
�
the desired inequality Vf (x; y) � 0 is valid.

We found an outer boundary of the ring shaped positively invariant set.

R � 2 for example would work.
We consider the expression

�
4�

�
5x2 � 2

p
3xy + 7y2

��
and try to �nd a circle x2+y2 =

r2 such that
�
4�

�
5x2 � 2

p
3xy + 7y2

��
� 0 on this circle:�

4�
�
5x2 � 2

p
3xy + 7y2

��
�
�
4�

�
5x2 + 2

p
3 jxyj+ 7y2

��
��

4�
�
5x2 + 2

p
3 jxyj+ 7y2

��
�
�
4�

�
5 +

p
3
�
x2 �

�
7 +

p
3
�
y2
�
�
�
4�

�
7 +

p
3
�
x2 �

�
7 +

p
3
�
y2
�
�

0

Therefore for x2 + y2 = r2 < 4=
�
7 +

p
3
�
the desired inequality Vf (x; y) � 0 is valid.

We have found the internal boundary for the ring shaped positively invariant set that
�nally is de�ned by

�
4=
�
7 +

p
3
�
< x2 + y2 < 4=

�
5�

p
3
�	
: Check the picture of the

ellips and two circles that we found.
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Max. 24 points;
Threshold for marks: for GU: VG: 19 points; G: 12 points. For Chalmers: 5: 21 points;

4: 17 points; 3: 12 points;
One must pass both the home assignments and the exam to pass the course.
Total points for the course are calculated as:
Total = 0:16Assignment1+ 0:16Assignment2+ 0:68Exam - that is the average of the

points for the home assignments (32%) and for this exam (68%). The same threshold is
valid for the exam, for home assignments, and for the total amount of points for the course.
Points that you have got for the assignments and for the exam are valid and are kept up

to the moment when you will collect all necessary points.
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