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1. Formulate and give a proof to the theorem about the dimension of the solution space
for the system of linear ODEs. (4p)

Theorem. (Proposition 2.7, p.30, L.R. in the case of non-autonomous systems).

Let by, ...,by be a basis in R¥ (or CV). Then the functions y; : R — R" (or CV) defined
as solutions to the I.V.P.

'(t) = A(t)x(t) (1)
with y;(7) = b;, 7 = 1,...N, by y;(t) = exp(A(t — 7))b;, form a basis for the space Syom of
solutions to (1). The dimension of the vector space Spom of solutions to (1) is equal to N -
the dimension of the system (1).

Hint to the proof. This property is a consequence of the linearity of the system and
the uniqueness of solutions to the system and is independent of detailed properties of the
matrix A(t).

Proof. Consider a linear combination of y;(t) equal to zero for some time ¢ € R:
l(o) = Z;\;l a;y;(0) = 0. The trivial constant zero solution coinsides with [ at this time
point.

But by the uniqueness of solutions to (1) it implies that [(¢) must coinside with the
trivial zero solution for all times and in particular at time ¢ = 7. Therefore Zjvzl a;b; = 0.
It implies that all coefficients o; = 0 because by, ..., by are linearly independent vectors in
RY(or CV). Therefore y;(t),...,yn(t) are linearly independent for all ¢ € R by definition.
Arbitrary initial data z(7) = £ can be represented as a linear combination of basis vectors
by,....by: €= Zjvzl C;b;. The construction of y;(t), ..., yn(t) shows that an arbitrary solution
to (1) can be represented as linear combination of y; (%), ..., yn(t).

#(t) = exp(A(t = 7)) = exp(A(t = 7)) D_ Csb; = D Cini (1)

Therefore {y(t), ..., yn(t)} is the basis in the space of solutions Sy and therefore Syom has
dimension N.H

2. Formulate and give a proof to LaSalle’s invariance principle. (4p)

Formulation.

Assume that f is locally Lipschitz as before and let ¢(t, ) denote the flow generated by
the corresponding system

o' = f(z)

Let U C G be non-empty and open. Let V : U — R be continuously differentiable and
such that Vi(z) = VV - f(2) < 0. for all z € U. If { € U is such that the closure of the
semi-orbit O (§) is compact and is contained in U, then R, C I¢ (maximal existence interval
for £) and ¢(t, &) approaches as t — oo the largest invariant set contained in Vf’I(O) that is
the set where V;(z) = 0.

Proof.

Proof given in the solution of Exercise 5.9, on p. 312.



Exercise 5.9
Set z(+) := ¢(-, £). By continuity of V' and compactness of cl(O™ (¢)), V' is bounded on
O™ (&) and so the function V oz is bounded. Since (d/dt)(Vox))(t) = Vy(z(t)) < 0 for
all t € Ry, V oz is non-increasing. We conclude that the limit lim; ... V(z(f)) = A
exists and is finite. Let z € (2(£) be arbitrary. Then there exists a sequence (t) in
R4 such that ¢, — oo and z(t,) — z as n — oo. By continuity of V, it follows that
V(z) = A. Consequently,

Viz) =A Vz € £2(¢). (%)
By invariance of £2(£), if z € £2(§), then p(t, z) € 2(¢) forallt € R and so V(p(t, z
A for all t € R. Therefore, Vi(p(t,z)) =0 for all t € R. Since ¢(0,z) =z and z i
arbitrary point of £2(£), it follows that

Vi(z) =0 Vz € £2(¢), (%)

and so {2(¢) C VJ,._I(D}. The claim now follows because, by Theorem 4.38, (2(£) is
invariant and z(t) approaches §2(¢) as t — oo.

Comment. It might be tempting to conclude from (%) that (V1")(z) = 0 for all
z € §2(¢), which then immediately would yield (*#). However, this conclusion is not
correct: the set £2({) is not open and therefore (*) does not imply that (VV')(z) =0 for
all z € 2(£). (The invalidity of the conclusion is illustrated by the following simple
example: if V(z) = ||z||* and 2(¢) = {z € RY : ||z| = 1}, then V(z) = 1 for all
z € 12(£), but (VV)(z) =2z #0 for all 2z € £2(£).)
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3. Consider the following matrix A= | —1 3 0
-1 1 2

a) Write down a canonical Jordan form .J for the matrix A and find the matrix P in the
relation J = P~'AP using eigenvectors and generalised eigenvectors to A (do not calculate
pP1.

b) Write down general solution to the system 2’ = Az with this matrix A. (4p)
Solution.
a)
1-X 1 0
The characteristic polynomial is det(A — AI) =det | —1 3—X 0 =
-1 1 2=A
(2 — \)det I-A 1 2-X) (M —4r+4) =(2-))°
-1 3-A '
The only eigenvalue A = 2 has multiplicity 3.
-1 10
Find eigenvectors. (A —21) =| —1 1 0 |. There are two linearly independent eigen-
-1 10
1 0
vectors, for examplew; = | 1 | andvy = | 0 |. We need one more generalized eigenvector
0 1

to construct the representation J = P~1AP . We consider equations (A — 2I)z = w; and

(A—2I)x = vy for possible generalized eigenvectors. They both are not solvable because the

range of the matrix (A — 2I) is one dimensional and consists of vectors parallel to the eigen-
1 1 0

vector | 1 | = w;+vse. It motivates to choose eigenvectorsv; = | 1 | and vy = | 0 | and
1 1 1



-1

ORI

a generalized eigenvector v, ’ = that is a solution to the equation (A — 2I)x = v;.
0

a
210
0 2 0 | and corresponding matrix P in the relation J = P7'AP has columns v, v%l)
00 2

1
and ve: P= | 1
1

Solution.

b) The general solution z(t) = ez to the equation can be written by choosing the
initial data xq expressed in terms of the basis of eigenvectors and generalized eigenvectors
zg = Civg + 02v§1) + C5v, and using for each term the representation for the exponent e4
acting on an element 2%/ of a particular generalized eigenspace:

m;—1

k
el = [Z (A— /\j])k %] etit 0

k=0

where m; is the multiplicity of the eigenvalue )\; and 2%7 is an element of the corresponding
generalized eigenspace.
General solution to the particular system of interest with initial data & = Civ, + Cgvf) +
Cg’UQiS
J}(t) = €2t (Clvl + tC’21}1 + CQU§1) + 031)2)

follows from the general expression
4. Find for which values of the parameter a the origin is an asymptotically stable
equilibrium, stable equilibrium, unstable equilibrium of the following system:
=y
{ y’:—ay—x?’—a% (4p)
Solution. Consider the Jacoby matrix of the right hand side in the equatiuon.

Az, y) = [ ¥ 2 L } It’s value in the origin is A(0,0) = [ 02 —1a ], with
characteristic polynomial: p(\) = A\* 4+ a\ + a®.

—a?—32%2 —a

. 2 . 2
Eigenvalues are A\;p = —§ £ /% —a?> = —5 £ 3%

The Grobman - Hartman theorem about stability by linearization imples that the origin
is asymptotically stable when a > 0 and is unstable when a < 0. For a = 0 linearization
does not give any information about stability because in this case Re A = 0. In this case the

!/
system is reduced to ;, B 113:3 and we can find an equation for trajectories of the system



from an ODE with separable variables:

dy  —a?
de vy
ydy = —2%dx
/ydy = —/xgdw
2 4
2t 2
I A
4 * 2

MOS 0.7 1 12

)
=

We observe that trajectories for the system are closed curves like "flattened circles"
parametrized by C' > 0. It implies that the origin is a stable equilibrium when a = 0.1

¢ One could also just guess that the positive definite test function V(z,y) = %4 + 92 is
a weak Lyapunov function for the system with the right hand side f(x,y):

flz,y) = {?ix?»}
f-vv =0

and make the same conclusion that the origin is a stable equilibrium in the case of a = 0.1
5. Consider the following system of ODEs. Prove the instability of the equilibrium point
in the origin, of the following system

{ y = 23— (4p)
using the test function V(x,y) = 2* — y* and Lyapunov’s instability theorem.
Solution.
Denoting f(z,y) = [ } consider how V (z,y) = z* —y*changes along trajectories
25 4 4 A3
of the system. f(x,y) - VV(z,y) = oy || | T

294x3 + yPdxd — 234y3 + vty = 2043 + P4y = 4(2® + 8) > 0.

Point out that the function V(z,y) = a* — y* is positive along the line y = z/2, z > 0
arbitrarily close to the origin. It implies according to the instability theorem, that the origin
is an unstable equilibrium.Hl

6. Show that the following system of ODEs has a periodic solution.

x =
{ ' yl 2 2 (4P)

y'=—3v+ (14" —y7)y



Solution.

We intend to proof that conditions of the Poincare - Bendixsons theorem can be satisfied.
Nemaly, that there is a ring shaped positively invariant set that does not include equilibrium
points of the system. We try to find such an invariant set bounded by level sets of a test
function V (z,y).

A convenient choice of the test function is V(x,y) = %xQ + 2. Tts level sets are ellipses
with center in the origin: %xQ +y? =C:

0.27
4 4 4 A 4 .0 4 4 | 4 4 4
+ + + + + + + + t + + +
1.5 -1.25 -1 0.75 -05 -0.25|0 025 05 .75 1 1.25 1.5
-0.2T

flzy) - VV(z,y) = {y—§x+(1—4x2—y2)y} ' { é;] -

2 1
= y3v + 2y (—gx + (1 — 42? — y2)y)
= 21— 42 —3?)

we observe that f(z,y) - VV(z,y) < 0 outside the ellipse &: 42% +y* =1

ey
t F———
100.10.20.30.40.5

and f(x,y)-VV(z,y) > 0 inside this ellipse. It means that inside the ellipse £ all trajectories
cross level sets of the test function V' in the direction out of the origin. Similarly outside
the ellipse £ all trajectories cross level sets of the test function V' in the direction towards
the origin.

To find the desired ring shaped invariant set we must find a level set of V' that lays
completely outside £ for the outer boundary of the invariant set, and a level set of V' that
lays completely inside £ for the inner boundary of the invariant set. We choose the ellipse
V(z,y) = %12 +y? = (1.5)2 as the outer boundary so that it upper point is above the upper



point of the elipse £ and the elllipse V(z,y) = %xQ +9? = % (0.5)2as the inner boundary, so
that its left and right points are inside the ellipse £.

The ring shaped set can be specified by inequalities & (0.5)* < V(z,y) < (1.5)°.

The system has only one equilibrium point in the origin. It follows from the observation
that equilibrium points must be on the x - axis and from the fact that 3’ = —%x on the z -
axeln and is zero only in the origin.

We can conclude that the system must have at least one periodic orbit inside the set
defined by %(0.5)2 <V(z,y) < (1.5)° .1



