MATEMATIK GU, Chalmers A.Heintz

Datum: 2013-01-15

Tid: 8:30

Hjälpmedel: Beta

Telefonvakt: Christoffer Stanadar

Tel.: 0762-721860.

Tenta i matematisk modellering, MMG510, MVE160

1. Liapunovs theory

Formulate and give a proof for Liapunovs theorem on instability of a fixed point together with definitions of the notions used in the formulation.

2. Linear systems

Consider the following ODE:

$$\frac{d\overrightarrow{r}(t)}{dt} = A\overrightarrow{r}(t), \ \overrightarrow{r}(t) = \begin{bmatrix} r_1(t) \\ r_2(t) \end{bmatrix} \text{ with a constant matrix } A \text{ defined as } A = 2I + C = -2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Define the evolution operator for this system.

(4p)

3. Liapunovs theory

Consider the following system of ODE and investigate stability of the fixed point in the origin. (4p)

$$\begin{cases} x' = x^3 + 2xy^2 \\ y' = x^2y \end{cases}$$

4. Periodic solutions to ODE.

Show that the following system of ODE has a periodic solution.

$$\begin{cases} x' = y \\ y' = -x + y(1 - 3x^2 - 2y^2) \end{cases}$$

Hint: transform the system to polar coordinates and consider the equation for polar radius.

(4p)

5. Chemical reactions by Gillespies method

Consider the following reactions: $X+Z \overset{c_1}{\leftarrow} W, \qquad W \overset{c_3}{\leftarrow} P$ where $c_i dt$ with $c_i > 0$ is the probability that $A_i = A_i + A_i + A_i = A_i + A$

the probability that during time dt the reaction with index i will take place i = 1, 2, 3.

- a) Using mass action law write down differential equations for the number of particles for these reactions. (2p)
- b) Give formulas for the algorithm that models these reactions stochastically by Gillespies method. (2p)

Max. 20 points;

For GU: VG: 15 points; G: 10 points. For Chalmers: 5: 17 points; 4: 14 points; 3: 10 points; Total points for the course will be the average of points for the project (60%) and for this exam together with bonus points for home assingments (40%).

MATEMATIK

Datum: 2013-01-15

Tid: 8:30

GU, Chalmers A.Heintz

Hjälpmedel: Beta

Telefonvakt: Peter Helgesson

Tel.: 0762-721860.

Lösningar till tenta i matematisk modellering, MMG510, MVE160

1. Liapunovs theory.

Formulate and give a proof for Liapunovs theorem on instability of a fixed point together with definitions of the notions used in the formulation. See the book by Arrowsmith Place. (4p)

2. Linear systems

Consider the following ODE:

$$\frac{d\overrightarrow{r}(t)}{dt} = A\overrightarrow{r}(t), \ \overrightarrow{r}(t) = \begin{bmatrix} r_1(t) \\ r_2(t) \end{bmatrix} \text{ with a constant matrix } A \text{ defined as } A = -2I + C = -2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Define the evolution operator for this system.

(4p)

Evolution operator is operator maps the initial data \vec{r}_0 into the solution: $\vec{r}(t) = \exp(At)\vec{r}_0$.

The matrix $\exp(At)$ can be computed using series $\exp(At) = I + At + \frac{A^2t^2}{2!} + \frac{A^3t^3}{3!} + \frac{A^4t^4}{4!} + \dots$

Considering $A = \lambda I + C$ with arbitrary λ we observe that $C^2 = 0$. It implies that

$$A^2 = 2\lambda C + \lambda^2 I$$
; $A^3 = (\lambda^2 I + 2\lambda C)(\lambda I + C) = 3C\lambda^2 + I\lambda^3$;

$$A^4 = (3C\lambda^2 + I\lambda^3)(\lambda I + C) = 4C\lambda^3 + I\lambda^4$$
, etc. $A^n = nC\lambda^{n-1} + I\lambda^n$

Substituting these expressions into the series for $\exp(At)$ we obtain

$$\exp(At) = \left(I + I(\lambda t) + \frac{I(\lambda t)^2}{2!} + \frac{I(\lambda t)^3}{3!} + \frac{I(\lambda t)^4}{4!} + \dots\right) +$$

$$\left(I + I(\lambda t) + \frac{I(\lambda t)^{2}}{2!} + \frac{I(\lambda t)^{3}}{3!} + \frac{I(\lambda t)^{4}}{4!} + \dots\right)Ct = \exp(\lambda t)(I + tC)$$

At the end we can substitute $\lambda = -2$.

3. Liapunovs functions and stability

Consider the following system of ODE and investigate stability of the fixed point in the origin.

(4p)

$$\begin{cases} x' = x^3 + 2xy^2 \\ y' = x^2y \end{cases}$$

Consider test function $V(x,y) = x^2 + y^2$. $V(x,y) \ge 0$. V(0,0) = 0.

$$V' = 2x(x^3 + 2xy^2) + 2yx^2y = 2x^4 + 6x^2y^2 = 2x^2(x^2 + 3y^2) > 0.$$

It implies that the origin is an unstable equilibrium point.

4. Periodic solutions to ODE.

Show that the following system of ODE has a periodic solution.

$$\left\{\begin{array}{l} x'=y\\ y'=-x+y(1-3x^2-2y^2) \end{array}\right.$$
 Hint: transform the system to polar coordinates and consider the equation for polar radius.

(4p)

Contrator and a contrator contrator at the contrator and a contrator

$$r' = r \sin^2(\theta) (1 - 3r^2 \cos^2(\theta) - 2r \sin^2(\theta))$$

We observe that for small enough $r \quad r' \geq 0$,

for example for r = 0.5: $r' = 0.25 \sin^2(\theta) (1 - 0.5 \cos^2(\theta)) \ge 0$

One observes also from the equation for r' that

 $r' \leq r \sin^2(\theta)(1-2r^2)$ that makes $r' \leq 0$ for $r \leq 1/\sqrt{2}$. Equality is attained only for $\theta =$ $0, \theta = \pi.$

It makes the ring $0.5 < r < 1/\sqrt{2}$ a positively invariant set for the system.

The only fixpoint of the sistem is the origin, therefore by the Poincare-Bendixson theorem it must have a periodic solution in this ring.

5. Chemical reactions by Gillespies method

Consider the following reactions:
$$X + Z \overset{c_1}{\leftarrow} W$$
, $W \overset{c_3}{\leftarrow} P$ where $c_i dt$ with $c_i > 0$ is the probability that during time dt the reaction with index i will take place $i = 1, 2, 3$.

- a) Using mass action law write down differential equations for the number of particles for (2p)these reactions.
- b) Give formulas for the algorithm that models these reactions stochastically by Gillespies method. (2p)

$$X' = -c_1 X Z + c_2 W$$

$$Z' = -c_1 X Z + c_2 W$$

$$W' = c_1 X Z - (c_2 + c_3) W$$

$$P'=c_3W$$

b) Gillespies metod.

 $P(\tau,\mu)d\tau$ is the probability that during time $d\tau$ the reaction μ will take place after the time τ when no reactions took place.

$$P(\tau,\mu) = P_0(\tau)h_{\mu}c_{\mu}d\tau.$$

Here $P_0(\tau)$ is the probability that no rections are observed during the time τ .

 $h_{\mu}c_{\mu}d\tau$ is the probability that just the reaction μ happen during time $d\tau$.

 h_{μ} is the number of combinations of particles for actual nubers X, Z, W, P that can make input to the reaction μ . For reaction 1 in the example $h_1 = X \cdot Z$, for reaction 2 it is $h_2 = W$, for reaction 3 it is $h_3 = W$, for reaction 4 it is $h_4 = P$.

$$P_0(\tau) = exp(-a\tau)$$
 with $a = \sum_{\mu=1}^4 h_\mu c_\mu$.

The algorithm for stochastic modelling consists of the following steps.

- 0) inicializing variables X, Z, W, P and time t = 0.
- 1) compute h_i , a.
- 2) Generate two random numbers r och p uniformly distributed over the interval (0,1).

Choose time τ before the next reaction as $\tau = 1/a \ln(1/r)$.

Choose next reaction μ so that $\sum_{i=1}^{\mu-1} h_i c_i \leq p a \leq \sum_{i=1}^{\mu} h_i c_i$.

3) Add time τ to the time variable t. Change variables X, Z, W, P representing numbers of particles according to the chosen reaction:

$$\mu = 1 \rightarrow X = X - 1, Z = Z - 1, W = W + 1.$$

$$\mu = 3$$
 $\rightarrow P = P + 1, W = W - 1.$
 $\mu = 4$ $\rightarrow P = P - 1, W = W + 1.$

3) If time t is larger than the maximal time finish computations otherwise go to the step 1. Max. 20 points;

For GU: VG: 15 points; G: 10 points. For Chalmers: 5: 17 points; 4: 14 points; 3: 10 points; Total points for the course will be the average of points for the project (60%) and for this exam together with bonus points for home assingments (40%).