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1. Liapunovs theory,

Formulate and give a proof for Liapunovs theorem on instability of a fixed point, (4p)

2. Periodic solutions to ODE,
Show that the following system has at least one periodic solution.

=z —2y— =z (@ —ay+y?)
¥ =22ty —y (2 -2y +y?)

(4p}

3. Bifurcations and stability of fixed points.

Constder the following system, find its fixed points, investigate their stability and identily
bifurcations of the fixed points depending on the parameter y for small absolute values of .

{ o’ = a(n — 2?)
¥ =-y2-y)
4. Hopf bifurcation.

Explain the meaning of Hopf bifurcation and show that the system

o = pz+y-—zy’
Y=+ py — g

has a Hopf bifurcation at p = 0. (4p)
5. Consider the Lottka - Volterra system of equations

{ dd—fr?zF(a—cS)
L = S(AF — k)

for populations of pray F (fish) and predators § (sharks). Explain the meaning of the terms
in the equations.

Show that the system has a fixed point in the first quadrant {F, 5 > 0) of the phase. Find
an equation repregenting closed orbits surrounding this fixed point, (4p)

Hint: find a relation between S and F by solving the differential equation with separable

variables for % that follows {rom: the system.

Max. 20 points;
For GU: VG: 15 points; G: 10 points, For Chalmers: 5: 17 points; 4: 14 points; 3: 10 points;

Total points for the course will be the average of points for the project {60%) and for this exam
together with bonus points for home assingments (40%).
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1. Liapunovs theory.

Formulate and give a proof for Liapunovs theorem on instability of a fixed point.
See Arrowsmith Place Theorem 5.4.3 p. 203.

2. Periodic selutions to ODE.

Show that the following system has at least one periodic solution.
{ o =z — 2 —a(z® -2y +7°)

¥ =224y —y (2 —ay + %)
We mulsiply the equations by z and by y and add them:

zr' = z? — 2wy — 22 (2% — 2y +1°)

vy = 2zy + ¥~ y? (m2 —zy+ y2)

1 (7‘2)' —ar = Fy? — (332 erz) (z? — zy +y2) = (= + ) (1 (a2 — g + %))

We observe that (r?)’ = 0if and only if (z,¥) = (0,0} or (x? ~ 2y +9°) = L.

r_ _ _ -.f:;__.m
=z—2y—x {1 2y =5 (z,y) = (0,0) so the

The last relation implies { =2ty —y Y =2

only fixed point is the origin.

The sign of the (r2)" is the same as the sign of 1 {z? — zy -+ y*). The expression (a? - 2y +*)

is a positive definite quadratic form. It is casy to see by transforming it to the some of squares:
2,3

(@~ oy +9%) = ([ 20 (o) + 7] - 2P +9%) = (fo - Gu)]* + 30?).

Therefore the level sets of (z? — zy -+ y?) are ellipses. Choosing D > 1and d <1 we observe

that the elliptic ring

where d < (22— 2y +9?) < D is a positively invariant set for the given system because
(rz)' > 0 for (2% —zy+y?) —=d < 1and (rg)' < 0 for (2% —ay +y*) = D > 1. This ring
does not include the origin that is the only fixed point of the system.
Therefore by a corollary from the Poincare-Bendixson theorem this ring must include at least
one periodic solution. W

3. Bifurcations and stability of fixed points.

Consider the following system, find its fixed points, investigate their stability and identify
bifurcations of the fixed points depending on the parameter y for small absolute values of p.

@ = a(p - a?)
{ ¥'=-y(2-y)
For p < 0 there are two fixed points: 73 = (0,0) and rg = (0,2).
For p = 0 there are also two fixed points 1 = (0,0) and r2 = (0,2).
For p > 0 thero are six fixed points: r; = (0,0) and r2 = (0,2); r3 = (V& 0) and rqy =
(*\/)!_L,O); Ty = (ﬁ!z)' and T = (—\/ﬁa 2);
The Jacobi matrix of the right hand side of the system is

—3z% 0
A(m;y:#):[g gy__z:l .




It lmplies that for p < 0 the fixed point r; = (0,0) is a stable knot and the fixed point
rg = (0, 2) is & saddle point.
For 1 = 0 fixed points 7y = (0,0) and rg = (0, 2) have a degenerate linearization:

A(0,0,0) = {g %, } and A(0,0,2) = [g ; ]

The linearization
For p>0:

0

the fixed point 71 = (0,0) is a saddle point and unstable: A{0,0, ) = [ 'g o

| T

the ﬁxed pOint r3 = (.\/ﬁ’ 0) is a stable knOtI A(\/}_L, O, #) - {: 52# 0_2 ]

the fixed point r4 = (—/fZ,0) is a stable knot: A(—,/,0,p) = [ 52!" . ]

the fixed point rp = (0,2) is an unstable knot: A(z,y, ) = { g g }

the fixed point r5 = (/Z, 2) is a saddle point and unstable: A(z,y,u) = [ {;2'“ 3 }

-2
the fixed point rg == (—,/Z, 2} is a saddle point and unstable: A(z,y,p) = [ 0 # g }
It implies that we observe in this system two pitchfork bifurcations at pt = 0:

the stable fixed point v1 = (0,0) splits into three fixed points 7y, 73, 74 : one unstable and
two stable and

the unstable fixed point r3 = (0, 2) splits into three fixed points rq, 75, rg : all three unstable.

. Hopf bifurcation.

Explain the meaning of Hopf bifurcation and show that the system

= pz+y—zy?
Y =-z+puy—y°

has a Hopf bifurcation at p = 0. (4p)
The system has a fixed point in the origin for all 1 with small absolute value.

Linearization of the system is:

f —_—

{m’x}m:—l—y
Y =-z+py

Eigenvalues of the corresponding matrix are A1 o(p) = # +4. It implies that i{%‘ﬁﬁ) =

1>0,

For < 0 we have stable focus(spiral), for p > 0 we have unstable focus (spiral) in a
neighborhood of the origin.

When g = 0 the stability of the system cannot be investigated by Iniearization because
Re A 2{0) = 0.

We try the set function V(z,y) = 22 + y? and see that when pp =0V’ = —2(a? + y?) < 0.
It implies that the origin is a stable fixed point. On the other hand the line 2 = 0 where
V=0 does not include any whole trajectory except the origin because ¥’ = —z when y = 0.
It makes that any non-trivial trajectory can only cross the line y = 0 where V! = 0 and
cannot helong to it. M




5. Consider the Lottka - Volierra system of equations

{%EzF(a—cS)

% = S(AF — k)

for populations of pray F' (fish} and predators S (sharks). Explain the meaning of the terms
in the equations,

Show that the system has a fixed point in the first quadrant (F,.5 > 0) of the phase. Find
the equation representing closed orbits surrounding this fixed point. (4p)

Hint: find the relation between S and F by solving the cquation with separable variables
for %g that follows from the system,

The system has only one fixed point with positive I and S that is: (a/c, k/A).
We consider the differential relation between F and S:

{ dF __ Fla—c8)
48 = TAF=R)

It implies:

{ QPP (a=eSMS _ (3 Eygp . (& —c)ds

_/()\—%)dl?‘:f(%—c)ds

The integration gives the following functional relation between F and S:
E4+alnS—~8c=FA—-knF.
Computing exponent of the left and right hand sides gives
Z =exp(E+aln§ — Sc) = EyS%~%; with Ey = ¢f an arbitrary constant.
Z =exp(FA—kInF) = F A",
The desired functional relation between F and § is:
Fp§te5¢ = kA
]

An extra(!) investigation of the left and the right hand sides of this relation implies that
points (S, F'} satisfying it constitute for different constants Ej closed curves around the fixed
point (a/c, k/A).

% (E0S%e=5) = FpS%e5¢ (a /S — c}. This derivative is zero for § = ¢/a that is $ - coordi-
nate of the fixed point {afc, k/\) of the system

L (Fke M) = FkeAF (—k/F + A) This derivative is zero for F' = A/k that is ' - coordinate
of the fixed point {a/c, k/A) of the system.

It is casy to see that these two functions Z(S) and Z(F) have a local maximum and a local
minimum in these points.

Graphics of these two functions look as the following:

1




The analysis of F' and § - values where Z(S) = Z(F) on these graphs implies that the points
(S, F) constitute closed curves in the § — F plane. There are no other fixed points except

(¢/a,A\/k} in the S — F plane. It implies that these closed curves must be closed periodic
orbits.

Max. 20 points;
For GU: VG: 15 points; Gt 10 points. For Chalmers: 5: 17 points; 4: 14 points; 3: 10 points;

"Total points for the course will be the average of points for the project (60%) and for this exam
together with bonus points for home asingments (40%).




