MATEMATIK GU, Chalmers A.Heintz Datum: 2012-05-30

Tid: 8:30

Hjälpmedel: Beta

Telefonvakt: Julia Christopher

Tel.: 0762-721860.

Tenta i matematisk modellering, MMG510, MVE160

1. Liapunovs theory.

Formulate and give a proof for Liapunovs theorem on instability of a fixed point. (4p)

2. Periodic solutions to ODE.

Show that the following system has at least one periodic solution.

$$\begin{cases} x' = x - 2y - x (x^2 - xy + y^2) \\ y' = 2x + y - y (x^2 - xy + y^2) \end{cases}$$
(4p)

3. Bifurcations and stability of fixed points.

Consider the following system, find its fixed points, investigate their stability and identify bifurcations of the fixed points depending on the parameter μ for small absolute values of μ .

$$\begin{cases} x' = x(\mu - x^2) \\ y' = -y(2 - y) \end{cases}$$

4. Hopf bifurcation.

Explain the meaning of Hopf bifurcation and show that the system

$$\begin{cases} x' = \mu x + y - xy^2 \\ y' = -x + \mu y - y^3 \end{cases}$$

has a Hopf bifurcation at $\mu = 0$.

(4p)

5. Consider the Lottka - Volterra system of equations

$$\begin{cases} \frac{dF}{dt} = F(a - cS) \\ \frac{dS}{dt} = S(\lambda F - k) \end{cases}$$

for populations of pray F (fish) and predators S (sharks). Explain the meaning of the terms in the equations.

Show that the system has a fixed point in the first quadrant (F, S > 0) of the phase. Find an equation representing closed orbits surrounding this fixed point. (4p)

Hint: find a relation between S and F by solving the differential equation with separable variables for $\frac{dF}{dS}$ that follows from the system.

Max. 20 points;

For GU: VG: 15 points; G: 10 points. For Chalmers: 5: 17 points; 4: 14 points; 3: 10 points; Total points for the course will be the average of points for the project (60%) and for this exam together with bonus points for home assingments (40%).

MATEMATIK

Datum: 2012-05-30

Tid: 8:30

GU, Chalmers

A.Heintz

Hjälpmedel: Beta

Telefonvakt: Julia Christopher

Tel.: 0762-721860.

Lösningar. Tenta i matematisk modellering, MMG510, MVE160

1. Liapunovs theory.

Formulate and give a proof for Liapunovs theorem on instability of a fixed point.

See Arrowsmith Place Theorem 5.4.3 p. 203.

2. Periodic solutions to ODE.

Show that the following system has at least one periodic solution.

$$\begin{cases} x' = x - 2y - x(x^2 - xy + y^2) \\ y' = 2x + y - y(x^2 - xy + y^2) \end{cases}$$

We multiply the equations by x and by y and add them:

$$\begin{cases} xx' = x^2 - 2xy - x^2(x^2 - xy + y^2) \\ yy' = 2xy + y^2 - y^2(x^2 - xy + y^2) \end{cases}$$

$$\frac{1}{2}\left(r^{2}\right)' = xx' + yy' = x^{2} + y^{2} - \left(x^{2} + y^{2}\right)\left(x^{2} - xy + y^{2}\right) = \left(x^{2} + y^{2}\right)\left(1 - \left(x^{2} - xy + y^{2}\right)\right)$$

We observe that $(r^2)'=0$ if and only if (x,y)=(0,0) or $(x^2-xy+y^2)=1$.

The last relation implies $\begin{cases} x' = x - 2y - x \\ y' = 2x + y - y \end{cases} \begin{cases} x' = -2y \\ y' = 2x \end{cases} \implies (x, y) = (0, 0) \text{ so the only fixed point is the origin.}$

The sign of the $(r^2)'$ is the same as the sign of $1-(x^2-xy+y^2)$. The expression (x^2-xy+y^2) is a positive definite quadratic form. It is easy to see by transforming it to the some of squares:

$$(x^2 - xy + y^2) = ([x^2 - 2x(\frac{1}{2}y) + \frac{1}{4}y^2] - \frac{1}{4}y^2 + y^2) = ([x - (\frac{1}{2}y)]^2 + \frac{3}{4}y^2).$$

Therefore the level sets of $(x^2 - xy + y^2)$ are ellipses. Choosing D > 1 and d < 1 we observe that the elliptic ring

where $d \leq (x^2 - xy + y^2) \leq D$ is a positively invariant set for the given system because $(r^2)' > 0$ for $(x^2 - xy + y^2) = d < 1$ and $(r^2)' < 0$ for $(x^2 - xy + y^2) = D > 1$. This ring does not include the origin that is the only fixed point of the system.

Therefore by a corollary from the Poincare-Bendixson theorem this ring must include at least one periodic solution. ■

3. Bifurcations and stability of fixed points.

Consider the following system, find its fixed points, investigate their stability and identify bifurcations of the fixed points depending on the parameter μ for small absolute values of μ .

$$\begin{cases} x' = x(\mu - x^2) \\ y' = -y(2-y) \end{cases}$$

For $\mu < 0$ there are two fixed points: $r_1 = (0,0)$ and $r_2 = (0,2)$.

For $\mu = 0$ there are also two fixed points $r_1 = (0,0)$ and $r_2 = (0,2)$.

For $\mu > 0$ there are six fixed points: $r_1 = (0,0)$ and $r_2 = (0,2)$; $r_3 = (\sqrt{\mu},0)$ and $r_4 = (-\sqrt{\mu},0)$; $r_5 = (\sqrt{\mu},2)$. and $r_6 = (-\sqrt{\mu},2)$;

The Jacobi matrix of the right hand side of the system is

$$A(x,y,\mu)=\left[egin{array}{cc} \mu-3x^2 & 0 \ 0 & 2y-2 \end{array}
ight]\,.$$

It implies that for $\mu < 0$ the fixed point $r_1 = (0,0)$ is a stable knot and the fixed point $r_2 = (0,2)$ is a saddle point.

For $\mu = 0$ fixed points $r_1 = (0,0)$ and $r_2 = (0,2)$ have a degenerate linearization:

$$A(0,0,0) = \left[\begin{array}{cc} 0 & 0 \\ 0 & -2 \end{array} \right] \text{ and } A(0,0,2) = \left[\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right].$$

The linearization

For $\mu > 0$:

the fixed point $r_1 = (0,0)$ is a saddle point and unstable: $A(0,0,\mu) = \begin{bmatrix} \mu & 0 \\ 0 & -2 \end{bmatrix}$

the fixed point $r_3 = (\sqrt{\mu}, 0)$ is a stable knot: $A(\sqrt{\mu}, 0, \mu) = \begin{bmatrix} -2\mu & 0 \\ 0 & -2 \end{bmatrix}$

the fixed point $r_4 = (-\sqrt{\mu}, 0)$ is a stable knot: $A(-\sqrt{\mu}, 0, \mu) = \begin{bmatrix} -2\mu & 0 \\ 0 & -2 \end{bmatrix}$

the fixed point $r_2=(0,2)$ is an unstable knot: $A(x,y,\mu)=\left[\begin{array}{cc} \mu & 0 \\ 0 & 2 \end{array}\right]$

the fixed point $r_5=(\sqrt{\mu},2)$ is a saddle point and unstable: $A(x,y,\mu)=\left[\begin{array}{cc} -2\mu & 0 \\ 0 & 2 \end{array}\right]$

the fixed point $r_6=(-\sqrt{\mu},2)$ is a saddle point and unstable: $A(x,y,\mu)=\begin{bmatrix} -2\mu & 0 \\ 0 & 2 \end{bmatrix}$

It implies that we observe in this system two pitchfork bifurcations at $\mu = 0$:

the stable fixed point $r_1 = (0,0)$ splits into three fixed points r_1 , r_3 , r_4 : one unstable and two stable and

the unstable fixed point $r_2 = (0,2)$ splits into three fixed points r_2 , r_5 , r_6 : all three unstable.

4. Hopf bifurcation.

Explain the meaning of Hopf bifurcation and show that the system

$$\begin{cases} x' = \mu x + y - xy^2 \\ y' = -x + \mu y - y^3 \end{cases}$$

has a Hopf bifurcation at $\mu = 0$.

(4p)

The system has a fixed point in the origin for all μ with small absolute value.

Linearization of the system is:

$$\begin{cases} x' = \mu x + y \\ y' = -x + \mu y \end{cases}$$

Eigenvalues of the corresponding matrix are $\lambda_{1,2}(\mu) = \mu \pm i$. It implies that $\frac{d(\operatorname{Re}\lambda_{1,2}(\mu))}{d\mu} = 1 > 0$.

For $\mu < 0$ we have stable focus(spiral), for $\mu > 0$ we have unstable focus (spiral) in a neighborhood of the origin.

When $\mu = 0$ the stability of the system cannot be investigated by lniearization because $\text{Re }\lambda_{1,2}(0) = 0$.

We try the set function $V(x,y)=x^2+y^2$ and see that when $\mu\mu=0$ $V'=-y^2(x^2+y^2)\leq 0$. It implies that the origin is a stable fixed point. On the other hand the line $y^2=0$ where V'=0 does not include any whole trajectory except the origin because y'=-x when y=0. It makes that any non-trivial trajectory can only cross the line y=0 where V'=0 and cannot belong to it.

5. Consider the Lottka - Volterra system of equations

$$\left\{ \begin{array}{l} \frac{dF}{dt} = F(a - cS) \\ \frac{dS}{dt} = S(\lambda F - k) \end{array} \right.$$

for populations of pray F (fish) and predators S (sharks). Explain the meaning of the terms in the equations.

Show that the system has a fixed point in the first quadrant (F, S > 0) of the phase. Find the equation representing closed orbits surrounding this fixed point. (4p)

Hint: find the relation between S and F by solving the equation with separable variables for $\frac{dF}{dS}$ that follows from the system.

The system has only one fixed point with positive F and S that is: $(a/c, k/\lambda)$.

We consider the differential relation between F and S:

$$\begin{cases} \frac{dF}{dS} = \frac{F(a-cS)}{S(\lambda F - k)} \end{cases}$$

It implies:

$$\left\{ \begin{array}{l} \frac{(\lambda F - k)dF}{F} = \frac{(a - cS)dS}{S} = \left(\lambda - \frac{k}{F}\right)dF = \left(\frac{a}{S} - c\right)dS \\ \int \left(\lambda - \frac{k}{F}\right)dF = \int \left(\frac{a}{S} - c\right)dS \end{array} \right.$$

The integration gives the following functional relation between F and S:

$$E + a \ln S - Sc = F\lambda - k \ln F.$$

Computing exponent of the left and right hand sides gives

 $Z = \exp(E + a \ln S - Sc) = E_0 S^a e^{-Sc}$; with $E_0 = e^E$ an arbitrary constant.

$$Z = \exp(F\lambda - k \ln F) = F^{-k}e^{\lambda F}$$
;

The desired functional relation between F and S is:

$$E_0 S^a e^{-Sc} = F^{-k} e^{\lambda F}$$

An extra(!) investigation of the left and the right hand sides of this relation implies that points (S, F) satisfying it constitute for different constants E_0 closed curves around the fixed point $(a/c, k/\lambda)$.

 $\frac{d}{dS}\left(E_0S^ae^{-Sc}\right)=E_0S^ae^{-Sc}\left(a/S-c\right)$. This derivative is zero for S=c/a that is S - coordinate of the fixed point $(a/c,k/\lambda)$ of the system

 $\frac{d}{dS}\left(F^{-k}e^{\lambda F}\right) = F^{-k}e^{\lambda F}\left(-k/F + \lambda\right)$. This derivative is zero for $F = \lambda/k$ that is F - coordinate of the fixed point $(a/c, k/\lambda)$ of the system.

It is easy to see that these two functions Z(S) and Z(F) have a local maximum and a local minimum in these points.

Graphics of these two functions look as the following:

The analysis of F and S - values where Z(S) = Z(F) on these graphs implies that the points (S,F) constitute closed curves in the S-F plane. There are no other fixed points except $(c/a,\lambda/k)$ in the S-F plane. It implies that these closed curves must be closed periodic orbits.

Max. 20 points;

For GU: VG: 15 points; G: 10 points. For Chalmers: 5: 17 points; 4: 14 points; 3: 10 points; Total points for the course will be the average of points for the project (60%) and for this exam together with bonus points for home asingments (40%).